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INVERSE PROBLEMS

Blurring, 
Down Sampling

noise

Inverse
problem

Restored image

original image
model 𝒅 = 𝑮(𝒙) + 𝒏

* Bae W and Yoo J, CVPRW, 2017

observed image

e.g. natural images

denoising & super-resolution*



INVERSE PROBLEMS

Maxwell equation
Láme equation

noise

Inverse
problem

Restored density

original density
model 𝒅 = 𝑮(𝒙) + 𝒏

• Yoo J et al., SIAM 2016

• Yoo J et al., SIAM 2018 (minor revision) 

observed field

e.g. electromagnetic, or acoustic wave

physical property reconstruction* or 
source localization



INVERSE PROBLEMS
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General statement of the problem
• To find the best model such that 𝒅 = 𝑮 𝒙

• In linear system, e.g. X-ray CT, we minimize the following cost function:

• In signal processing society:

more constraints, assumptions, regularization, iterative methods, etc.

න𝑮(𝑪 + 𝑫)𝐝𝐱

σ→



INVERSE PROBLEMS

𝐝 = 𝐆𝐱, 𝝓 = 𝒅 − 𝑮𝒙 𝟐
𝟐

General statement of the problem
• To find the best model such that 𝒅 = 𝑮 𝒙

• In linear system, e.g. X-ray CT, we minimize the following cost function:

• In machine learning society: 

CNN

෩𝑮𝑻, where ෩𝑮𝑻𝑮 = 𝑰𝒅 𝒙

Conv, ReLU, pooling, etc.



AGENDA

Deep learning works extremely well… but why?

• Sometimes blind application of these techniques provides even better performance than 

mathematically driven classical signal processing approaches.

• The more we observe impressive empirical results in image reconstruction problems, the more 

unanswered questions we encounter:

“Why convolution? Why do we need a pooling and unpooling in some architectures? etc.”

• What is the link between the classical signal processing theory and deep learning?

Can deep learning go beyond?

• Would it be possible to train the network learn the complicated non-linear physics?

• How?



I. INTRODUCTION

A. Inverse scattering problem (DOT)

B. What to solve? & How to solve?



INVERSE SCATTERING PROBLEMS

photon trajectories Light interaction with matter

Photon/Wave scattering in a turbid media (Very non-linear, ill-posed )

• Trajectories/Interactions (absorption, scattering, reflection, etc.)

• Electromagnetic, Elastic, Optical, Acoustic waves :  𝒅 = 𝑮 𝒙 ← more generalized model



INVERSE SCATTERING PROBLEMS

Inverse Scattering Problems in Medical Imaging

• Applications

Near Infra-Red (NIR), Ultrasound, Photo-acoustic, EEG, etc.

Non-invasive, non-destructive examination

Fast, cheap, and portable machine



Near-infrared light can travel deep in tissue, as a result of the relatively small absorption of 
water and hemoglobin.

The goal of DOT is to reconstruct the spatial distribution of optical/physiological properties at each 
point (or volume element) in the tissue from measurements of fluence rate on the tissue surface.

* Durduran et al., MICCAI, 2010

INVERSE SCATTERING PROBLEMS

Near-infrared (NIR, ~650-950 nm)



INVERSE SCATTERING PROBLEMS

Lipmann-Schwinger Equation

• Mapping between the 3D distribution of optical properties 𝑓 and the measurements 𝑔

3D distribution 𝒇 → Measurement 𝒈

(𝒇 comes from a smoothly varying perturbation 𝛿𝝁)

1) 광센서로부터 광학 계수 분포 𝒇 에 대한 측정 데이터 𝒈를 얻습니다.

2) 이 때, 둘 사이의 관계는 적분 방정식으로 표현할 수 있습니다.

Measurement 𝒈 → 3D distribution 𝒇 ???

non-linear, ill-posed 

𝑮−𝟏? ? ?



INVERSE SCATTERING PROBLEMS

Lipmann-Schwinger Equation

• Mapping between the 3D distribution of optical properties 𝑓 and the measurements 𝑔

3D distribution 𝒇 → Measurement 𝒈

(𝒇 comes from a smoothly varying perturbation 𝛿𝝁)

1) 광센서로부터 광학 계수 분포 𝒇 에 대한 측정 데이터 𝒈를 얻습니다.

2) 이 때, 둘 사이의 관계는 적분 방정식으로 표현할 수 있습니다.

Measurement 𝒈 → 3D distribution 𝒇 ???

non-linear, ill-posed 

DEEP LEARNING !!!....??

OKAY…..



ISSUES TO OVERCOME

1. Lack of good conventional algorithms 

• Applying conventional inversion algorithms and denoising the artifacts using the CNNs 

are unsatisfactory since they rely on heavy assumptions and linearization.

e.g. Born approximation

𝑢𝑚
𝑖 𝒙 ≫ 𝑢𝑚

𝑠 (𝒙)

𝑖



ISSUES TO OVERCOME

1. Lack of good conventional algorithms 

• Applying conventional inversion algorithms and denoising the artifacts using the CNNs 

are unsatisfactory since they rely on heavy assumptions and linearization.

Photoacoustic tomography (PAT)[3]

[1] ODT, Kamilov et al., Optica, 2015

[2] Electron scattering, Broek and Koch, Physical review letter

[3] PAT, Antholzer et al. arXiv, 2017



ISSUES TO OVERCOME

1. Lack of good conventional algorithms 

• Applying conventional inversion algorithms and denoising the artifacts using the CNNs 

are unsatisfactory since they rely on heavy assumptions and linearization.

2. Domain & dimension mismatch (How to design the network???)

• The measurements 𝒈 and optical distribution image 𝒇 live in different domain with 

different dimension (1D → 3D, severely ill-posed). 

3. Commercial device was not available.

• Still laboratory or research level usage.

• Proto-type device available (not calibrated or validated).

4. Lack of real data

• At the early stage, only a single data measured by proto-type device were available



ISSUES TO OVERCOME

1. Lack of good conventional algorithms 

• Applying conventional inversion algorithms and denoising the artifacts using the CNNs 

are unsatisfactory since they rely on heavy assumptions and linearization.

2. Domain & dimension mismatch (How to design the network???)

• The measurements 𝒈 and optical distribution image 𝒇 live in different domain with 

different dimension (1D → 3D, severely ill-posed). 

3. Commercial device was not available.

• Still laboratory or research level usage.

• Proto-type device available (not calibrated or validated).

4. Lack of real data

• At the early stage, only a single data measured by proto-type device were available

DCNN is certainly the trend of this era …

We need a new design of network architecture



ISSUES #1,2 : SOLUTION

Neural network for inverting Lipmann-Schwinger Equation

•

Neural network for inverting Lipmann-Schwinger Equation

• The inverting operator is naturally found during the training phase.

• Achieve a denoised signal with a good signal representation which is trained via data without any assumption.



ISSUES #1,2 : SOLUTION

• The overall structure of the networks is remained same across different set of experiment data

• The number of convolution layers and their filters vary dependent on the data but this is chosen to show the 

best performance not due to the failure of the network

• Note that the rest of parameters such as Gaussian noise variance and dropout rate are remained same for 

every case



1. Lack of good conventional algorithms 

• Applying conventional inversion algorithms and denoising the artifacts using the CNNs 

are unsatisfactory since they rely on heavy assumptions and linearization.

2. Domain & dimension mismatch

• The measurements 𝒈 and optical distribution image 𝒇 live in different domain with 

different dimension (1D → 3D, severely ill-posed). 

3. Commercial device was not available.

• Still laboratory or research level usage.

• Proto-type device available (not calibrated or validated). 

4. Lack of real data

• At the early stage, only a single data measured by proto-type device were available

ISSUES TO OVERCOME

Make your hands dirty. Start from the system.

If you don’t have the data. Make it up.



ISSUES #3,4 : SOLUTION

System calibration and data acquisition

• Based on the data from hardware system (KERI), performed the 

signal analysis to calibrate the hardware system. 

• Phantom with known optical values are used.

𝐒𝟏,𝐃𝟏
𝐒𝟏,𝐃𝟐
𝐒𝟏,𝐃𝟑

⋮
𝐒𝟏, 𝐃𝐦
𝐒𝟐,𝐃𝟏

⋮
𝐒𝐧,𝐃𝐦

Schematic illustration of DOT system DOT system (KERI)



ISSUES #3,4 : SOLUTION

System calibration and data acquisition



ISSUES #3,4 : SOLUTION

Data preprocessing

• Discard the measurement pairs over the src-det distance limit (51 𝑚𝑚)

• Find the optical coefficients based on the homogeneous model

Data preprocessing based on src-det distance

Source

Detector

<51 𝒎𝒎



ISSUES #3,4 : SOLUTION

Simulation data generation

• Using the finite element method (FEM) based solver NIRFAST

• Mesh data are re-gridded to matrix form 

• Up to three anomalies with different size (radius: 2 𝑚𝑚 ~ 13 𝑚𝑚) and optical 

properties at various position (𝑥, 𝑦, 𝑧)

• Anomaly has two to five times bigger optical properties than the homogeneous 

background (similar to tumor compared to the normal tissue).

• 1500 data (1000 for training / 500 for validation)



ISSUES #3,4 : SOLUTION

Matching the signal envelop

𝐶 = 𝑢𝑠𝑖𝑚𝑢𝑙
𝑖 𝒙 ./𝑢𝑒𝑥𝑝

𝑖 (𝒙)

Data preprocessing

• Discard the measurement pairs over the src-det distance limit (51 𝑚𝑚)

• Find the optical coefficients based on the homogeneous model

• Domain adaptation from real to simulation data

(matching the signal envelope, amplitudes, etc.)
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• Discard the measurement pairs over the src-det distance limit (51 𝑚𝑚)

• Find the optical coefficients based on the homogeneous model

• Domain adaptation from real to simulation data

(matching the signal envelope, amplitudes, etc.)

This took 80% of the research

EXPERIMENT DESIGN, DEVICE CALIBRATION, DATA PREPROCESSING, UNDERSTANING PHYSICS, 
DATA GENERATION, EXPERIMENT, EXPERIMENT, EXPERIMENT … TRIALS AND ERRORS

DL MODEL 
DESIGN



1. Lack of good conventional algorithms 

• Applying conventional inversion algorithms and denoising the artifacts using the CNNs 

are unsatisfactory since they rely on heavy assumptions and linearization.

2. Domain & dimension mismatch

• The measurements 𝒈 and optical distribution image 𝒇 live in different domain with 

different dimension (1D → 3D, severely ill-posed). 

3. Commercial device was not available.

• Still laboratory or research level usage.

• Proto-type device available (not calibrated or validated). 

4. Lack of real data

• At the early stage, only a single data measured by proto-type device were available

ISSUES TO OVERCOME



II. EXPERIMENTS

A. Results

B. Take home messages



TRAINING

• Additive Gaussian noise (𝜎 = 0.2) 

• Dropout (𝑝 = 0.7) for FC layer

• Background 𝜇𝑎 values are 

subtracted

• Data is centered and normalized 

to range between (-1,1)

• MSE loss

• ADAM optimizer (default setup)

• Batch size: 64

• Early stoppling (no improvement in 

validation loss for 10 epochs)

• Training time: ~380 SEC

SIMULATION



PHANTOM



DBT Image

DBT ImagePHANTOM



DBT Image

DBT ImagePHANTOM



Iterative method

Mouse (tumor) Proposed

Mouse (normal)

ProposedMouse (normal)

DBT Image

IN VIVO
bottommiddle

bottommiddle

bottommiddle



bottommiddleIterative method

bottommiddleMouse (tumor) Proposed

Mouse (normal)

Proposed bottommiddleMouse (normal)

DBT Image

IN VIVO



TAKE HOME MESSAGE

1) Domain knowledge matters

2) Data preprocessing is important

* DL NEEDS BABYSITTING A LOT!

• GARBAGE IN → GARBAGE OUT

• 측정 신호에 대한 이해(DOMAIN KNOWLEDGE)를

바탕으로 충분한 PREPROCESSING 필요하다.

This took 80% of the research

EXPERIMENT DESIGN, DEVICE CALIBRATION, DATA PREPROCESSING, UNDERSTANING PHYSICS, 
DATA GENERATION, EXPERIMENT, EXPERIMENT, EXPERIMENT … TRIALS AND ERRORS

DL MODEL 
DESIGN

* MAKE YOUR WORKING ENVIRONMENT

• IDEA가 생겼을 때 바로 실험을 해볼 수 있는 환경을

만드는 것이 중요하다.

3) Do not afraid to make your hands dirty

4) Quick trial and errors
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EXPERIMENT DESIGN, DEVICE CALIBRATION, DATA PREPROCESSING, UNDERSTANING PHYSICS, 
DATA GENERATION, EXPERIMENT, EXPERIMENT, EXPERIMENT … TRIALS AND ERRORS

DL MODEL 
DESIGN

20%가 20%일 수 있었던 이유



OKAY THAT WORKS…BUT WHY?



IV. THEORY

A. Deep Convolutional Framelets



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 1

“Lifted Hankel matrix of noiseless signal 𝑓 is often low-ranked whereas that of noise 𝜖 is usually full-ranked” [1-3]

Ye JC et al., 2017

𝑓1

𝑓2

𝑓3

is a Hankel matrix of signal 𝑓 with size d.
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For an image patch 𝑓, smooth or structured signals 
has a sparse coefficients in Fourier domain.

Let 𝑓 ∈ ℝ𝑛 be a vectorized patch with 𝑛 number of 
pixels.  Here,



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 1
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For an image patch 𝑓,
መ𝑓 ∈ ℝ𝑛 = 𝑓 + 𝜖

“Lifted Hankel matrix of noiseless signal 𝑓 is often low-ranked whereas that of noise 𝜖 is usually full-ranked” [1-3]

Matrix factorization

: low-ranked

: full-ranked
(or sparse)

Ye JC et al., 2017

ℝ𝑛×𝑑

𝑓1

𝑓2

𝑓3



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 1

“Lifted Hankel matrix of noiseless signal 𝑓 is often low-ranked whereas that of noise 𝜖 is usually full-ranked” [1-3]

For an image patch with missing pixels 𝑓 ∈ ℝ𝑛,

∈ ℝ𝑛×𝑑 is a rank-deficient  Hankel matrix,

Matrix completion, or Netflix problem

Jin et al., IEEE TIP, 2015



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN.”

Convolution

”convolution”, WiKipedia



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN.”

𝒇 ∈ ℝ𝒏

𝝍 ∈ ℝ𝒅

𝒚𝟏

…

𝒚𝒄𝒉

Convolution     

⟺



DEEP CONVOLUTIONAL FRAMELETS

c.f.

Single-input multi-output (SIMO)

Multi-input single-output (MISO)

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN.”



DEEP CONVOLUTIONAL FRAMELETS

decoder

encoder

𝒇 𝒇

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN.”



DEEP CONVOLUTIONAL FRAMELETS

decoder

encoder

OBSERVATION 3

“In the signal processing point of view, what CNNs are doing is to find an energy-compacting signal 
representations (low-ranked) by training a set of local bases 𝜳 for a given non-local bases 𝚽.”

Yoshua Bengio's slides, 2013



SUMMARY SO FAR

Observation 1

Lifted Hankel matrix of noiseless signal 𝑓 is often low-ranked whereas that of noise 𝜖 is 

usually full-ranked [1-3].

Observation 2

There is a close relationship between Hankel matrix and Convolution.

Observation 3

In signal processing perspective, what CNN actually does is to find a new signal 

representation by learning a set of local bases from the data while the global bases are fixed. 

[1] Ye JC et al., IEEE TIT, 2017

[2] Yin et al., SIAM, 2017

[3] Ye and han, 2017



PROPOSED FRAMEWORK

Neural network for inverting Lipmann-Schwinger Equation

•

Neural network for inverting Lipmann-Schwinger Equation

* Deep Convolutional Framelets

• The inverting operator is naturally found during the training phase.

• Achieve a denoised signal with a good signal representation which is trained via data without any assumption.



CONCLUSION

I PROPOSED A NOVEL DEEP LEARNING FRAMEWORK 

FOR INVERSE SCATTERING PROBLEMS

Developed deep learning framework inverting Lippmann-Schwinger equation

Showed that the physical intuition is directly mapped to each layer of network  

Showed that the framework successfully works in various examples

1. end-to-end system / simple architecture

• no explicit modeling and boundary conditions

• data-driven (benefit from the data set)

• fast and efficient learning and inference

• no post-processing for parameter tuning 

conventional analytic approaches

ADVANTAGES OVER THE OTHER APPROACHES



CONCLUSION

standard CNNs 
2. extensibility / practicality

• for different modalities and final image sizes

• for different experimental conditions

• trainable with numerical data 

(learning the signal representation)

I PROPOSED A NOVEL DEEP LEARNING FRAMEWORK 

FOR INVERSE SCATTERING PROBLEMS

Developed deep learning framework inverting Lippmann-Schwinger equation

Showed that the physical intuition is directly mapped to each layer of network    

Showed that the framework successfully works in various examples

ADVANTAGES OVER THE OTHER APPROACHES


