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What is XAlI?-Definition

Explainable Artificial Intelligence(XAl)
is an Al form
which can be understood by humans.

Xai Engine for Al Ethics



What is XAl?-Technical and Business effects

Technical Effects

a. Detect and Delete Data BIAS and Stereotypes
b. Improve Model Correctness and Performance
C. Decrease Data Amount for Neural Learnings

Business Effects

a. Find out Deep Learning Data Bias and Wrong Interrelation
b. Risk Management in Deep Learning Models
C. Ensure Business Insight and Process Improvement

Garbage In, and Garbage OUT!



Why Xai? : Unintended Al Errors
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Models Can Be(come) Racist & Sexist

Google News Vector

In [7]): model.most similar(positive=['computer programmer', ‘woman'], negative=['man'])

out[7]: [('homemaker', ©.5627118945121765),
("housewife', 0.5105047225952148),
('graphic designer', 0.505180299282074),
('schoolteacher', 0.49794942140579224),

In [10]: model.most similar(positive=['mexicans'], topn=30)

Unintended Results

('mexican', 0.6493428945541382),
("thats ok', ©.6343405246734619),
("americans', 0.6324713230133057),
(*illegals', ©.6298996210098267),
('"ILLEGAL aliens', ©.62891161441860298),

(Source: Katharine Jarmul, Towards Interpretable Reliable Models, 19 October 2017.
https://blog.kjamistan.com/towards-interpretable-reliable-models/)




£3 =2 F2= =20l Flol
Debu .

O1ZEA CIHZ(D

- EBIE{ 2|2 E(Pinterest) 2| 4] dietA} 4 AEHE =Lt o] HAlR'd W=

-z alg| <AES I =2 (The Death of Gods> -




Humanistic Background

—Human (Un)Consciousness and Al Consciousness

—Explainability and Interpretability



A GOOD Explanation?

Rashomon Effect --- <Rashomon>(1950)

Event-Murder |
»\ 27 - Four Witnesses:

- Four Different/Contradictory Explanations
- - occurs when differing explain the same event

| . 1Event - 4 Different Interpretations
(A) (B C ‘D) _Motive
' ' ' s - Mechanism
- Occurences

| Epistemological Framework
| -ways of thinking, knowing, and remembering

Rashomon Effect: 5 . '
The contradictory (but plausible) BTl oI T LA ELNAM N (I &

interpretations of the same incident

by difteeit peosle: but Equally Plausible Account
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Human (un)Consciousness
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Al Consciousness: HOW?
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Explainability vs. Interpretability

Explain - Explanation - Explainability?

- EXPLAIN something: talking about WHAT IT IS. = ONE Answer

- Introduce the Question and Propose the Way to Answer that question.

- Takes something at Face Value (literally / word for word / just as written)

Interpret - Interpretation - Interpretability?

- INTERPRET something: talking about WHAT IT MEANS. = SEVERAL Answers
- Means that the introduction should be Concise and Focused.
- Takes the Meaning (Figuratively/ Interpreted)

and, using one’ s own words, Explain.

“Interpretability depends on the Target Audience”



Current Xai Open Source Tools
1. Classification Explanations

2. Neural Network Architectures
3. Other Tools and Notebooks




Open Source Tools(1): Classification Explanations

LIME (Local Interpretable Model-agnostic Explanations)
- Find subsets of your data which can explain the model at a local level.

*Eli5 (explain to me like I'm five)
- Open-source library with great documentation allowing you to build visual
explanations of classifiers and regression models.

Sklearn-ExpertSys

- Decision and Rule-based sets for Classifiers.

(Source: Kjamastian Inc., Towards Interpretable Reliable Models 19 October 2017,
https://blog.kjamistan.com/towards-interpretable-reliable-models/)



Open Source Tools(2): Neural Network Architectures

-Attention-Based Networks:

-Attention RNNs are useful in determining what the network has learned
due to the network's memory access.

-This gives special meaning to the image-based networks
because of our ability to then "see" clusters of pixels alongside the network.

For more reading, check out:
-Training and Analyzing Deep RNNs,
-A Neural Attention Model for Sentence Summarization
-Show, Attend and Tell: Neural Image Caption Generation with Visual
Attention for a start.

Generator-Encoder Rationales

-Great paper and library which shows a method of generating smaller rationales
-using phrases from the text for several NLP tasks including multi-aspect sentiment analysis.

(Source: Kjamastian Inc., Towards Interpretable Reliable Models 19 October 2017,
https://blog.kjamistan.com/towards-interpretable-reliable-models/)



Open Source Tools(3): Other Tools and Notebooks

YellowBrick
-Data Visualization library aimed at making visual explanations easier.
-1 have so far only played around with this for data exploration,
not for explaining models, but | am curious to hear your experience!
*MMD-critic
-A meaningful approach to sampling!

-Google Brain resident Been Kim also wrote an accompanying paper
which explains how this library works to help you sample

lan Ozsvald's Notebook using Eli5

-lan and | have been chatting about these libraries, and | asked him to continue to
update and elaborate his own use of tools like eli5.
-Updates will come as well, so check back!

-Bayesian Belief Networks

-Probabilistic Programming is cool again! (or always was... probably?)
-This is one of many libraries you can use for building Bayesian networks.

(Source: Kjamastian Inc., Towards Interpretable Reliable Models 19 October 2017,
https://blog.kjamistan.com/towards-interpretable-reliable-models/)
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Xai Case Studies

2.1BM Al Fairness 360(2017.11)




Xai Case Study (1)
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Explainable Artificial Intelligence (XAl)

PV

EXPMINAB[E ARTIFICIAL INTEllIBENEE

FY17 FY18 | FY19 | FY20 | FY21 |
David Gunning

DARPA/I20
Program Update November 2017
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Measuring Explanation Effectiveness

DAL

EXPLAINABLE ARTIFICIAL INTELLIGENCE

Explanation Framework

Decision or
Action

Explainable | Explainable
Interface .

XAl System

recommendation,
decision, or action

blanatfol

explanatic
user that just

Recommendation, 1

Task

Explanation
-Choice
-Decision

system | -Recommendation he

-Action

recommendaton,
decision, or action

pus

Evaluation

User Satisfaction

= Clarity of the explanation (user rating)

= Ultility of the explanation (user rating)

Mental Model

Understanding individual decisions
Understanding the overall model
Strength/weakness assessment
‘What will it do’ prediction

‘How do | intervene’ prediction

Task Performance

« Does the explanation improve the
user’s decision, task performance?

= Artificial decision tasks introduced to
diagnose the user’s understanding

Trust Asssesment

= Appropriate future use and trust

Corrections

Identifying Errors
Correcting Errors

Contlnuous Training

Approved for public release: distribution un ILcu.



DARPA

EXFLAINABLE ARTIFICIAL INTELLIGENCE

Evaluator

TA1

TA 2

Meetings

2017

2021

2018

FEB | MAR | APR | MAY | JUN

2020

B | MAR | APR | MAY | JUN

ocT

NOV

DEC | AN

m | o | avs | seP AUG 128 | FeEB | mar] arr | may AUG

PHASE 1: Technology Demonstrations

Evaluator: 1-3
T T N 1 T T T ) ) T T T N Y I T | A

PHASE 2: Comparative Evaluations

Prep for Eval 3

SEP NOV | DEC | 1aN | FEB | MAR | APR | MAY

A=1ll Analyze Results &
3 Accept Toolkits

Technical Area 1 (Explainable Learners) Milestones 2021 L. I
Demonstrate the explainable learners against problems proposed [

Technical Area 1: Explainable Learners w/Test I o
I N S S S S A A [T T T
Technical Area 2: Psychology of Explaination Computatona

48 E2

Demonstrate the explainable learners against common problems (Phase 2)
Deliver software libraries and toolkits (at the end of Phase 2)

Technical Area 2 (Psychology of Explanation) Milestones

Deliver an interim report on psychological theories (after 6 months during
Deliver a final report on psychological theories (after 12 months, during PF

Toolkits

Model

Deliver a computational model of explanation (after 24 months, during Pha__ _,

Deliver the computational model software (at the end of Phase 2)
Approved for public release: distribution unlimited.

21



IBM Al Fairness 360(2018.3) : 18'H &H01

AT FAIRNESS 360: AN EXTENSIBLE TOOLKIT FOR DETECTING,
UNDERSTANDING, AND MITIGATING UNWANTED ALGORITHMIC BIAS

Rachel K. E. Bellamy ' Kuntal Dey® Michael Hind" Samuel C. Hoffman' Stephanie Houde'
Kalapriya Kannan® Pranay Lohia* Jacquelyn Martino' Sameep Mehta® Aleksandra Mojsilovic'
Seema Nagar® Karthikeyan Natesan Ramamurthy ' John Richards' Diptikalyan Saha” Prasanna Sattigeri’
Moninder Singh' Kush R. Varshney' Yunfeng Zhang'



Al Fairness 360 - Concept

® A new open source Python toolkit for algorithmic fairness - https://github.com/ibm/aif360
® The main objectives of this toolkit are
- to help facilitate the transition of fairness research algorithms to use in an industrial setting

- and to provide a common framework

for fairness researchers to share and evaluate algorithms.
® The package includes

- a comprehensive set of fairness metrics for datasets and models,
explanations for these metrics,
and algorithms to mitigate bias in datasets and models.
® |talsoincludes an interactive Web experience (https://aif360.mybluemix.net) that
- provides a gentle introduction to the concepts and capabilities for line-of-business users,
- as well as extensive documentation, usage guidance, and industry-specific tutorials
to enable data scientists and practitioners
to incorporate the most appropriate tool
for their problem into their work products.

e Performance: A built-in testing infrastructure maintains code quality




Al Fairness 360: Processing Pipeline

Original Dataset

Raw Data i

............ T T T TI L
L _J‘ "~y : validation

convert Testing [ S
N7
fair

Pre-Processing

Predicted Dataset
Testing

Post- ,
A Pre- 4 processor | Post-Processing
processor

Transformed
Dataset

|

Fair
Predicted Dataset

Figure 1. The fairness pipeline. An example instantiation of this generic pipeline consists of loading data into a dataset object. trans-
forming it into a fairer dataset using a fair pre-processing algorithm, learning a classifier from this transformed dataset, and obtaining
predictions from this classifier. Metrics can be calculated on the original, transformed, and predicted datasets as well as between the
transformed and predicted datasets. Many other instantiations are also possible.



Al Fairness 360 Pipeline: Algorithms

Algorithms AIF 360 currently contains 9 Bias Mitigation Algorithms
- that span these three categories.

All the algorithms are implemented
-by inheriting from the Transformer class.

Transformers are an abstraction for any process
-that acts on an instance of Dataset class
-and returns a new, modified Dataset object.

This definition encompasses
-Pre-processing, In-processing, and Post-processing Algorithms.



Four Different Fairness Metrics

Figure 4. Statistical Parity Difference (SPD) and Disparate Impact (DI) before (blue bar) and after (orange bar) applying pre-processing
algorithms on various datasets for different protected attributes. The dark gray bars indicate the extent of 1 standard deviation. The
ideal fair value of SPD i1s 0 and DI 1s 1.
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Figure 5. Fairness vs. Balanced Accuracy before (top panel) and after (bottom panel) applying various bias mitigation algorithms. Four
different faimess metrics are shown. In most cases two classifiers (Logistic regression - LR or Random forest classifier - RF) were used.
The ideal fair value of disparate impact is 1, whereas for all other metrics it is 0. The circles indicate the mean value and bars indicate
the extent of +1 standard deviation. Dataset: Adulz. Protected attribute: race.



K-Xai Engine: L-TTE System(V.1)

- Architecture and Pipeline -



K-Xai Engine: L-TTEC Connected

R
A
W

K-Xai Engine: L-TTEC Architecture

Learning-Training-Testing-Evaluation and Correction Connected System(v.1)

Learning PKG

Training PKG Test-Evalu PKG

Learning
Models

-Neural Nets
-Deep Learnings
-Pattern Theory
-Probabilistic Logic
-Explainable RL
-Causal Modelling
-Cognitive Modelling
-Single-modal &
Multi-modal
Hybrid Models

AiContents LAB

Curriculum
Learning

-Reinforcement
Learning
-Adaptive Models
-Model Induction
-Graphical Models
-Markov Models
-Bayesian Belief Net
-SRFs: CRFs, HBNs,
MLNs
-Ensemble Methods
-Random Forests
-Decision Trees

Testing Metrics

-E-Model Metrics
-I-Model Metrics
Evaluation Metrics
- Task Performance
- MentalSatisfaction
- Trust Assessment
Ethics Metrics
-Guidelines: GDPRs
-Rules
-Regulations
-Law

Corrections
-ldentifying Errors
-Applying Changes

Explanation

- Prediction

- Decision

- Recommendation

- Text, Image, Audio,
Video

CPU + GPU

Interpretation
- Decision Diagram
- Narrative Generation
- Interactive Visualization
- Descriptive Generation
- Show and Tell
- Argumentation and

Pedagogy
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Measuring Explanation Effectiveness [PX#aW Al Fairness 360: Processing Pipeline

Explanation Framework S MUSEI 0"9'"t  Classifier | Predicted Dataset
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Recommendation,
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convert
to CSV

Understanding individual decisions

= . = Understanding the overall model
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= Artificial decision tasks introduced to
recommendahon recqmmendauon diagnose the user’'s understanding Transformed

decision, or action decision, or action
Dataset

I/.) “*1 Predicted Dataset

= Appropriate future use and trust

Corrections
Identifying Errors
Correcting Errors

K-Xai Engine: L-TTE Connected
Training PKG | Test-Evalu PKG Fair Dataset
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Models Learning -E-Model Metrics - Prediction
-I-Model Metrics - Decision
-Neural Nets -Reinforcement Evaluation Metrics - Recommendation
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-Random Forests 1d SO - Show and Tell
-Decision Trees -ldentifying Errors - Argumentation and
AiContents LAB -Applying Changes Pedagogy




................................................
»

Single-modal Process | Multi-modal

Audio ~ . | Deep Learning
& - .;‘ «\3’ -4
— "'"v"\\ —
400
_“l{, *r,' -
)
RS Accurate,
"0, 4 Integrative
" Inference

/

Car, Accident,
Pedestrian

K-Xai Engine Learning PKG: Hybrid Learning Models
S48, Y, HAE ZEE| BE 53 (Multizmodal Hybrid) 213X 52| € 22, (EX

=KAIST]



018

-

arXiv:1806.09614v] [cs.LG] 25 Jun
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Automated Curriculum Learning for Neural Networks
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A bstract
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{eg. Bengioctal, 20(¥), dx in pist to the greaster com-
plexity of problems now being considered.  In particular,
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has relied o= cumicsa (o scalke 1P O onger of moR com-
plicated tasks (Sesdewr and Zarmba, 2014; Reed and
e Preitas, 2015; Graveset al, 20162 We expect this trend
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thix differs Fom our work in thal the ordenizg was enlirely
determized before cach tnamng rus, rather than adaptively
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Explanation (COGLE) of Deep Adaptive Programs (xACT)
An interactive sensemaklng system to explaln Tools for explaining deep adaptive programs
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Explainability: When to USE?
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Interpretability: When to USE?

To increase Trust and Accountability

Decisions about Humans

Critical Applications that decide about Life and Death

To test newly developed models or systems with unknown
results

Debugging the Models

When the Loss Function does not cover all Constraints
Models using proxies instead of casual inputs

(Source: Finale Doshi-Velez and Been Kim, Towards A Rigorous Science of Interpretable Machine Learning(2017)



Al Ethics and Governance System
- Machine Learning Algorithm and Data Ethics

- Toward Al Governance System




Machine Learning Algorithm and Data Ethics
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Al Algorithm Pipeline

“Code is Law!”

-Lessig(1999)
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“From Code is Law

to Law is Code!”
-De Filippi & Hassan(2016)
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Al Data Pipeline

Garbage N,
and Garbage OUT!
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Toward Al Governance: Coverage and Process

 Coverage
- 2IZ XIS =2l (Ethics)
- 213X ot} kX, = 2l0|H{A|(Security, Safety, and Privacy)

- 018X 70| =211, ™, =l 7&], H=(Guideline, Regulation, Principle, Law)

XIS 2K & £B(Education and Training)

* Process
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Toward Al Governance System

Al Ethics Governance Encompasses:
71 22
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Al Ethics, Education, Law and Governance System
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1. K-Xai Engine and Microservices(w/Containers)
2. Alin the Pocket: Chatbot, Al Agents Platform
3. Post-Human: Singularity and Omega Point
- Intelligence, Intellectuality, and Spirituality
4. Human Engineering: Enhancement and Augmentation
5. Human Value Recognition Al

6. Quantum Computing and xG Network



“as soon as it works,

no one calls it Al anymore.”
- John McCarthy(1956)
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