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Teacher—Student Relation in Deep Neural Network

Large Neural Network
Classification Accuracy : 93.33%

Teacher’s
Knowledge

<Teacher Network>

Small Neural Network
Classification Accuracy : 58.34%

= HHF

<Student Network>

Christian Szegedy, Wei Liu, Yangaing Jia, Pierre Sermanet, Scitt Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich. Going Deeper with Convolutions.
In CVPR, 2015.
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Teacher—Student Relation in Deep Neural Network

Large Neural Network
Classification Accuracy : 93.33%
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Christian Szegedy, Wei Liu, Yangaing Jia, Pierre Sermanet, Scitt Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich. Going Deeper with Convolutions.
In CVPR, 2015.
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Do Deep Nets Really Need to be Deep?. In N/FS, 2014,

- Lei Jimmy Ba and Rich Caruana.
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Do Deep Nets Really Need to be Deep?. In N/FS, 2014,

— Lei Jimmy Ba and Rich Caruana.
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Do Deep Nets Really Need to be Deep?. In N/FS, 2014,

- Lei Jimmy Ba and Rich Caruana.
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Do Deep Nets Really Need to be Deep?. In N/FS, 2014,

- Lei Jimmy Ba and Rich Caruana.
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Do Deep Nets Really Need to be Deep?. In N/FS, 2014,

- Lei Jimmy Ba and Rich Caruana.
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Distilling the knowledge in a Neural Network. In N/PS workshop, 2014.

— Geoffrey Hinton, Oriol Vinyals and Jeff Dean.
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Distilling the knowledge in a Neural Network. In N/PS workshop, 2014.

— Geoffrey Hinton, Oriol Vinyals and Jeff Dean.
n—1,, Layer — ‘

Propagation
Direction

eZi

Softmax(Y; =

=1 ezi)

Final output
softmax distribution| —

Cross-entropy Loss : L(¥,Y) = -Y,Y;log?

True label —> ‘ ‘ G ‘
Mg

$ ’:
/l

o
L~

18 Animal pictures — www.freepik.com <Last section of DNN>



Distilling the knowledge in a Neural Network. In N/PS workshop, 2014.

— Geoffrey Hinton, Oriol Vinyals and Jeff Dean.
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Distilling the knowledge in a Neural Network. In N/PS workshop, 2014.

— Geoffrey Hinton, Oriol Vinyals and Jeff Dean.

Freezing all weights(Pre-trained)
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FitNets: Hints for Thin Deep Nets. In /CLA, 2015.

— Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and Yoshua Bengio.
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FitNets: Hints for Thin Deep Nets. In /CLA, 2015.

— Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and Yoshua Bengio. < Pre tra|ned teaCher netWOFk(Hlnt) >
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FitNets: Hints for Thin Deep Nets. In /CLA, 2015.

— Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and Yoshua Bengio.
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FitNets: Hints for Thin Deep Nets. In /CLA, 2015.

— Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and Yoshua Bengio.

Algorithm # params Accuracy
Compression
FitNet ~2.5M 64.96%
Teacher ~9M 63.54%
State-of-the-art methods
Maxout 61.43%
Network in Network 64.32%
Deeply-Supervised Networks | 65.43%

Table 2: Accuracy on CIFAR-100

Network | # layers | # params | # mult Acc Speed-up | Compression rate
Teacher 5 ~9M ~T725M | 190.18% 1 1

FitNet 1 11 ~250K ~30M 89.01% 13.36 36

FitNet 2 11 ~862K ~108M | [91.06% 4.64 10.44
FitNet 3 13 ~1.6M ~392M | [91.10% 1.37 5.62

FitNet 4 19 ~2.5M ~382M | 191.61% 1.52 3.60

Table 5: Accuracy/Speed Trade-off on CIFAR-10.




A Gift from Knowledge Distillation:
Fast Optimization, Network
Minimization and Transfer
Learning

2017

6 CVPR



A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and
Transfer Learning. In CVPR, 2017. ‘ || I
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= Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.
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A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and
Transfer Learning. In CVPR, 2017. ‘ | I
o) o)

= Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.
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A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and
Transfer Learning. In CVPR, 2017.

= Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.
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A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and
Transfer Learning. In CVPR, 2017.

= Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.

Accuracy Accuracy
Teacher-original 91.91 Teacher-original 64.06
Student-original 87.91 Student-original 58.65
FitNet [20] 88.57 FitNet [20] 61.28
Proposed Method 88.70 Proposed Method

Table 3. Recognition rates (%) on CIFAR-10. We used a resid-  Table 4. Recognition rates (%) on CIFAR-100. We used a residual

ual DNN with 8 layers for the student DNN and 26 layers for the =~ DNN with 14 layers for the student DNN and 32 layers for the
teacher DNN. teacher DNN.
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Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer. In /CLR, 2017.

— Sergey Zagoruyko and Nikos Komodakis.

input image teacher

attent|on
map
attentlo
transfer
I attention
map

student
<Normal image & Attention map> <Attention Transfer>
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Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer. In /CLR, 2017.

— Sergey Zagoruyko and Nikos Komodakis.
>I I I I I |

v v
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Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer. In /CLR, 2017.

— Sergey Zagoruyko and Nikos Komodakis.
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<Attention Transfer structure>
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Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer. In /CLR, 2017.

— Sergey Zagoruyko and Nikos Komodakis.
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7% 2 I 1 ) ) )
= = I T
7z 7 B T A I
1 T T
1 I Y

o eed ] Jenlodd . 1.,

Figure 4: Activation attention maps for various ImageNet networks: Network-In-Network (62%
top-1 val accuracy), ResNet-34 (73% top-1 val accuracy), ResNet-101 (77.3% top-1 val accuracy).
Left part: mid-level activations, right part: top-level pre-softmax acivations

NIN

ResNet-34

ResNet-101

ResNet-10
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Paying More Attention to Attention: Improving the Performance of Convolutional
Neural Networks via Attention Transfer. In /CLR, 2017.

— Sergey Zagoruyko and Nikos Komodakis.

student teacher student AT F-ActT | KD | AT+KD | teacher
NIN-thin, 0.2M NIN-wide, IM 0.38 8.93 0.05 8.95 8.33 7.28
WRN-16-1, 0.2M | WRN-16-2, 0.7"M 8.77 7.93 8.51 7.41 7.51 6.31
WRN-16-1, 0.2M | WRN-40-1, 0.6M 8.77 8.25 8.62 8.39 8.01 6.58
WRN-16-2, 0.7M | WRN-40-2, 2.2M 6.31 5.85 6.24 6.08 5.71 5.23

Table 1: Activation-based attention transfer (AT) with various architectures on CIFAR-10. Error 1s
computed as median of 5 runs with different seed. F-ActT means full-activation transfer (see g4. 1.2|].

Model topl, top5
ResNet-18 | 30.4, 10.8
AT 29.3, 10.0
ResNet-34 | 26.1, 8.3

Table 5: Attention transfer validation error (single crop) on ImageNet. Transfer losses are added on
epoch 60/100.
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Paraphrasing Complex Network: Network Compression via Factor Transfer.
In M/IPS, 2018.

- Jangho Kim, SeongUk Park and Nojun Kwak.
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Paraphrasing Complex Network: Network Compression via Factor Transfer.

In MVIPS, 2018.

- Jangho Kim, SeongUk Park and Nojun Kwak.
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Paraphrasing Complex Network: Network Compression via Factor Transfer.

In NV/PS, 2018.
- Jangho Kim, SeongUk Park and Nojun Kwak.
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Paraphrasing Complex Network: Network Compression via Factor Transfer.

In MIPS, 2018.

- Jangho Kim, SeongUk Park and Nojun Kwak.
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Paraphrasing Complex Network: Network Compression via Factor Transfer.
In M/IPS, 2018.

- Jangho Kim, SeongUk Park and Nojun Kwak.

Student Teacher

42

Student AT KD FT AT+KD FT+KD || Teacher
ResNet-56 (0.85M) | ResNet-110(1.73M) 28.04 27.28  27.96 |25.62 28.01 26.93 26.91
ResNet-20 (0.27M) | ResNet-110(1.73M) 31.24 31.04 33.14 |29.08 34.78 32.19 26.91
Student Teacher k=05 k=075 k=1 k=2 |k=4 CAE RAE
ResNet-56 (0.85M) | ResNet-110(1.73M) 25.62 25.78 25.85 25.63 | 25.87 2641  26.29
ResNet-20 (0.27M) | ResNet-110(1.73M) 29.20 20.25 29.28  29.19 | 29.08 29.84 30.11

Table 3: Mean classification error (%) on CIFAR-100 dataset (5 runs). All the numbers are from our

implementation.

Paraphraser Translator CIFAR-10 CIFAR-100
Yes No 6.18 27.61
No Yes 6.12 27.39
Yes Yes 5.71 26.91

Student (WRN-40-1[0.6M]) [ 7.02 28.81

Teacher (WRN-40-2[2.2M]) 4.96 24.10

Table 4: Ablation study with and without the paraphraser (k = 0.5) and the Translator. (Mean test
error (%) of 5 runs).

Method Network Top-1 Top-5

Student Resnet-18 [29.91 10.68 |
KD Resnet-18 33.83 12.55

AT Resnet-18 29.36 10.23

FT (k = 0.5) Resnet-18 | 28.57 9.71 |
Teacher Resnet-34 26.73 8.57

Table 5: Top-1 and Top-5 classification error (%) on Ima-
geNet dataset. All the numbers are from our implementation.
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Born—Again Neural Networks. In /CML, 2018.

— Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti and Anima Anandkumar.

44
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Born—Again Neural Networks. In /CML, 2018.

— Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti and Anima Anandkumar.

Step 0 * Step 1 + Step K * Ensemble

Figure 1. Graphical representation of the BAN training procedure: during the first step the teacher model T is trained from the labels
Y. Then, at each consecutive step, a new identical model is initialized from a different random seed and trained from the supervision of
the earlier generation. At the end of the procedure, additional gains can be achieved with an ensemble of multiple students generations.

k
[’(f(xa argminﬁ(f(a:, 91@—1)))7 f(ﬂ?, 9/@)) fk(x) — Zf((ﬁ,@z)/k

Or—1
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Born—Again Neural Networks. In /CML, 2018.

— Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti and Anima Anandkumar.

Table 1. Test error on CIFAR-10 for Wide-ResNet with different Table 3. Test error on CIFAR-100 for Wide-ResNet students
depth and width and DenseNet of different depth and growth factor.  trained from identical Wide-ResNet teachers and for DenseNet-90-
60 students trained from Wide-ResNet teachers

Network Parameters | Teacher | BAN

Wide-RosNet-28-1 038 M 6.69 6.64 Network Teacher | BAN | Dense-90-60
Wide-ResNet-28-2 148 M 506 4.86 Wide-ResNet-28-1 30.05 29.43 24.93
Wide-ResNet-28-5 916 M 413 4.03 Wide-ResNet-28-2 25.32 ||24.38 18.49
Wide-ResNet-28-10 36 M 377 3 86 Wide-ResNet-28-5 20.88 1]20.93 17.52
DenseNet-112-33 63 M 324 361 Wide-ResNet-28-10 19.08 18.25 16.79
DenseNet-90-60 16.1 M 3.81 3.5

DenseNet-80-80 224 M 3.48 3.49

DenseNet-80-120 504 M 3.37 3.54
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Network Recasting: A Universal Method for Network Architecture Transformation.
In AAA/, 2019.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.
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Network Recasting: A Universal Method for Network Architecture Transformation.
In AAA/, 2019.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

MSE Loss Lmee(Wr, Ws) = || (s Wr) — Al W)

<Student Network>
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Network Recasting: A Universal Method for Network Architecture Transformation.
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Network Recasting: A Universal Method for Network Architecture Transformation.
In AAA/, 2019.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.
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Network Recasting: A Universal Method for Network Architecture Transformation.
In AAA/, 2019.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

MSE Loss Lpse(Wr, Wg) = %IIA(:E;WT) — A(z; Ws)||;

<Student Network>
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Network Recasting: A Universal Method for Network Architecture Transformation.
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Network Recasting: A Universal Method for Network Architecture Transformation.
In AAA/, 2019.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.
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Network Recasting: A Universal Method for Network Architecture Transformation.
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1
Lonse(Wr, Ws) = £ || A(w; Wr) — Az; W)l
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Ws*=argmin Lmse(Wr, Ws)
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blosk blo%k block blo%k Bottleneck Convolution Reduced
T T Compression Basic Basic Reduced
o i T 64-d T gt p Convolution  Convolution Reduced
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<Method for dimension mismatch> <Recasting Methods>
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Ws*=argmin Lmse(Wr, Ws)
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TESﬁ-d T64-d T 256-d T 64-d T 2048-d T‘ 512-d
Block 1 Block 1 Block 1 Block 1
(source) (target) o (trained) * *
T 64-d T64-d T 64-d T 64-d .
Teacher Student Teacher Student Teacher Student

1
Emse(WTg Ws) — N ||A(9’J, WT) — A(fL’, Ws) ||§ 'de(WT: WS) — Emse_logit(WT: WS) + ‘Cce(ytruea WS)
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Figure 6: Visualization of filters in the first layer of AlexNet
(left) and a student network (right). Redundant filters are re-
moved after network recasting.
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Table 3: Error rates (%) of compression results on CIFAR datasets. (B/M: billion/million)

Method Type Cl0+ CIl100+ Params Mults Acts/image Time/image
VGG-16
Baseline 6.85 28.80 14.7T1IM (1.0x) 313.20M (1.0x) 0.31M(1.0x) 0.37ms
Recasting Conv 8.31 31.56 2.36M (6.2x) 50.63M (6.2x) 0.13M (2.4x) 0.31ms
KD Conv 9.24 33.14 2.36M (6.2x) 50.63M (6.2x) 0.13M (2.4x) 0.31ms
Backprop  Conv 8.71 35.13 2.36M (6.2x) 50.63M (6.2x) 0.13M (2.4x) 0.31ms
WRN-28-10
Baseline 4.06 19.54  36.45M (1.0x) 5.24B (1.0x) 2.52M (1.0x) 0.81ms
Recasting  Basic 5.18 2413 | 1.46M (24.9x) 0.21B (24.5x) 0.52M (4.9x) 0.56ms
KD Basic 5.48 25.28 | 1.46M (24.9x) 0.21B (24.5x) 0.52M (4.9x) 0.56ms
Backprop  Basic 5.39 25.78 | 1.46M (24.9x) 0.21B (24.5x) 0.52M (4.9x) 0.56ms

Table 5: Comparison of error rate (%) with previous works on ILSVRC2012. (B/M: billion/million)

Method Topl  Top5 Params Mults  Acts/batch  Actual speed-up
ResNet-50
Recasting(C+R;) 25.00 7.71 | 21.72M  2.40B  236.16M 2.1x
ThiNet-30 (Luo, Wu, and Lin 2017) 31.58 11.7 8.66M 1.10B - 1.3x
AutoPruner (r = 0.3) (Luo and Wu 2018) 2747  8.89 - 1.32B - -
VGG-16

Recasting(C_A) 30.05 10.38] 120.61M 3.12B  220.61M 3.2x
ThiNet-Conv (Luo, Wu, and Lin 2017) 30.20 10.47 | 131.44M 4.79B - 2.5x%
RNP (3x) (Lin et al. 2017) - 12.42 - - - 2.3x
Channel Pruning (3x) (He, Zhang, and Sun 2017) - 11.10 - - 2.5x

54 AutoPruner (r = 0.4) (Luo and Wu 2018) 31.57 11.57 - 4.09B - -
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Table 4: Accuracy (%) on CIFAR-100 and Tiny ImageNet.

CIFAR-100 [15] | Tiny ImageNet [46]

Baseline 71.26 54.45

~ RKD-D | 7227 |  [5497]
RKD-DA 72.97 56.36

~ HKDI[II] | 7426 | 57.65
HKD+RKD-DA 74.66 58.15

- FitNet[27] | [7081] | = 5559
FitNet+RKD-DA 72.98 55.54

- Attention [47] | = 7268 | 5551
Attention+RKD-DA 73.53 56.55
Teacher 77.76 61.55




SUMMARY
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