

딥러닝 모델 엑기스 추출 Knowledge Distillation

Machine Learning & Visual Computing Lab 김유민

CONTEXT

- Compression Methods
- Distillation
- Papers
- Summary

COMPRESSION METHODS

[1] Song Han, Jeff Pool, John Tran and Willan J. Dally. Learning both Weights and Connections for Efficient Neural Networks. In NIPS, 2015.

[2] Song Han, Huizi Mao and William J. Dally. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. In ICLR, 2016.

[3] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. In *arXiv*, 2017.

[4] Chun-Fu(Richard) Chen et al. Big-Little Net: an Efficient Multi-Scale Feature Representation for visual and speech recognition. In ICLR, 2019.

4

DISTILLATION

Teacher-Student Relation

Teacher-Student Relation in Deep Neural Network

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scitt Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich. Going Deeper with Convolutions. In *CVPR*, 2015. Teacher-Student Relation in Deep Neural Network

8

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scitt Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich. Going Deeper with Convolutions. In *CVPR*, 2015. Teacher-Student Relation in Deep Neural Network

9

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scitt Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and Andrew Rabinovich. Going Deeper with Convolutions. In *CVPR*, 2015.

Do Deep Nets Really Need to be Deep?

- Lei Jimmy Ba and Rich Caruana.

<Last section of DNN>

- Lei Jimmy Ba and Rich Caruana.

<Last section of DNN>

- Lei Jimmy Ba and Rich Caruana.

<1st step. Training Teacher Network>

- Lei Jimmy Ba and Rich Caruana.

<2nd step. Training Student Network>

14

- Lei Jimmy Ba and Rich Caruana.

<Student deosn't overfit>

<Better teacher, Better student>

Distilling the Knowledge in a Neural Network

2014 NIPS workshop

- Geoffrey Hinton, Oriol Vinyals and Jeff Dean.

<Last section of DNN>

- Geoffrey Hinton, Oriol Vinyals and Jeff Dean.

<Last section of DNN>

- Geoffrey Hinton, Oriol Vinyals and Jeff Dean.

19

- Geoffrey Hinton, Oriol Vinyals and Jeff Dean.

<Knowledge Distillation structure>

<Hard target to soft target distribution>

FitNets: Hints for Thin Deep Nets

FitNets: Hints for Thin Deep Nets. In ICLR, 2015.

- Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and Yoshua Bengio.

FitNets: Hints for Thin Deep Nets. In ICLR, 2015.

- Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and Yoshua Bengio.

FitNets: Hints for Thin Deep Nets. In ICLR, 2015.

- Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and Yoshua Bengio.

Algorithm	# params	Accuracy			
Compression					
FitNet	$\sim 2.5 M$	64.96 %			
Teacher	$\sim 9 \mathrm{M}$	63.54%			
State-of-the-art methods					
Maxout	61.43%				
Network in N	64.32%				
Deeply-Supe	65.43 %				

Table 2: Accuracy on CIFAR-100

Network	# layers	# params	# mult	Acc	Speed-up	Compression rate
Teacher	5	$\sim 9 M$	~725M	90.18%	1	1
FitNet 1	11	~250K	$\sim 30 M$	89.01%	13.36	36
FitNet 2	11	~862K	$\sim 108 M$	91.06%	4.64	10.44
FitNet 3	13	$\sim 1.6 \mathrm{M}$	\sim 392M	91.10%	1.37	5.62
FitNet 4	19	$\sim 2.5 \mathrm{M}$	~382M	91.61%	1.52	3.60

Table 5: Accuracy/Speed Trade-off on CIFAR-10.

- Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.

- Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.

* (a, b) = Inner product of a and b

- Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.

- Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim.

	Accuracy
Teacher-original	91.91
Student-original	87.91
FitNet [20]	88.57
Proposed Method	88.70

Table 3. Recognition rates (%) on CIFAR-10. We used a residual DNN with 8 layers for the student DNN and 26 layers for the teacher DNN.

	Accuracy
Teacher-original	64.06
Student-original	58.65
FitNet [20]	61.28
Proposed Method	63.33

Table 4. Recognition rates (%) on CIFAR-100. We used a residual DNN with 14 layers for the student DNN and 32 layers for the teacher DNN.

Paying More Attention to Attention: Improving the Performance of CNN via Attention Transfer

- Sergey Zagoruyko and Nikos Komodakis.

input image

attention map

<Normal image & Attention map>

- Sergey Zagoruyko and Nikos Komodakis.

<Attention mapping functions>

Н

- Sergey Zagoruyko and Nikos Komodakis.

<Attention Transfer structure>

- Sergey Zagoruyko and Nikos Komodakis.

Figure 4: Activation attention maps for various ImageNet networks: Network-In-Network (62% top-1 val accuracy), ResNet-34 (73% top-1 val accuracy), ResNet-101 (77.3% top-1 val accuracy). Left part: mid-level activations, right part: top-level pre-softmax acivations

- Sergey Zagoruyko and Nikos Komodakis.

student	teacher	student	AT	F-ActT	KD	AT+KD	teacher
NIN-thin, 0.2M	NIN-wide, 1M	9.38	8.93	9.05	8.55	8.33	7.28
WRN-16-1, 0.2M	WRN-16-2, 0.7M	8.77	7.93	8.51	7.41	7.51	6.31
WRN-16-1, 0.2M	WRN-40-1, 0.6M	8.77	8.25	8.62	8.39	8.01	6.58
WRN-16-2, 0.7M	WRN-40-2, 2.2M	6.31	5.85	6.24	6.08	5.71	5.23

Table 1: Activation-based attention transfer (AT) with various architectures on CIFAR-10. Error is computed as median of 5 runs with different seed. F-ActT means full-activation transfer (see §4.1.2).

Mode1	top1, top5
ResNet-18	30.4, 10.8
AT	29.3, 10.0
ResNet-34	26.1, 8.3

Table 5: Attention transfer validation error (single crop) on ImageNet. Transfer losses are added on epoch 60/100.
Paraphrasing Complex Network: Network Compression via Factor Transfer

- Jangho Kim, SeongUk Park and Nojun Kwak.

<Autoencoder structure>

<t-SNE visualization of factor space>

- Jangho Kim, SeongUk Park and Nojun Kwak.

- Jangho Kim, SeongUk Park and Nojun Kwak.

- Jangho Kim, SeongUk Park and Nojun Kwak.

- Jangho Kim, SeongUk Park and Nojun Kwak.

Student	Teacher	Student	AT	KD	FT	AT+1	KD F	Γ+KD	Teacher
ResNet-56 (0.85M)	ResNet-110 (1.73M)	28.04	27.28	27.96	25.62	28.0)1 2	26.93	26.91
ResNet-20 (0.27M)	ResNet-110 (1.73M)	31.24	31.04	33.14	29.08	34.7	8 3	32.19	26.91
Student	Teacher	k = 0.5	k = 0.	.75 k =	=1 /	c = 2	k = 4	CAE	RAE
ResNet-56 (0.85M)	ResNet-110 (1.73M)	25.62	25.78	8 25.	.85 2	25.63	25.87	26.41	26.29
ResNet-20 (0.27M)	ResNet-110 (1.73M)	29.20	29.25	5 29.	.28 2	29.19	29.08	29.84	30.11

Table 3: Mean classification error (%) on CIFAR-100 dataset (5 runs). All the numbers are from our implementation.

Pa	raphraser	Translator	CIF	AR-10	CIFAF	R-100
	Yes	No	6	5.18	27.	61
	No	Yes	6	5.12	27.	39
	Yes	Yes	4	5.71	26.	91
St	udent (WR	N-40-1[0.6M])	1	7.02	28.	81
Teacher (WRN-40-2[2.2M])				4.96	24.	10

Table 4: Ablation study with and without the paraphraser (k = 0.5) and the Translator. (Mean test error (%) of 5 runs).

Method	Network	Top-1	Top-5
Student	Resnet-18	29.91	10.68
KD	Resnet-18	33.83	12.55
AT	Resnet-18	29.36	10.23
FT $(k = 0.5)$	Resnet-18	28.57	9.71
Teacher	Resnet-34	26.73	8.57

Table 5: Top-1 and Top-5 classification error (%) on ImageNet dataset. All the numbers are from our implementation.

Born-Again Neural Networks

Born-Again Neural Networks. In ICML, 2018.

- Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti and Anima Anandkumar.

Born-Again Neural Networks. In ICML, 2018.

- Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti and Anima Anandkumar.

Figure 1. Graphical representation of the BAN training procedure: during the first step the teacher model T is trained from the labels Y. Then, at each consecutive step, a new identical model is initialized from a different random seed and trained from the supervision of the earlier generation. At the end of the procedure, additional gains can be achieved with an ensemble of multiple students generations.

$$\mathcal{L}(f(x, \operatorname*{arg\,min}_{\theta_{k-1}} \mathcal{L}(f(x, \theta_{k-1}))), f(x, \theta_k)) \qquad \hat{f}^k(x) = \sum_{i=1}^k f(x, \theta_i)/k$$

Born-Again Neural Networks. In ICML, 2018.

- Tommaso Furlanello, Zachary C. Lipton, Michael Tschannen, Laurent Itti and Anima Anandkumar.

Table 1. **Test error on CIFAR-10** for Wide-ResNet with different depth and width and DenseNet of different depth and growth factor.

Network	Parameters	Teacher	BAN
Wide-ResNet-28-1	0.38 M	6.69	6.64
Wide-ResNet-28-2	1.48 M	5.06	4.86
Wide-ResNet-28-5	9.16 M	4.13	4.03
Wide-ResNet-28-10	36 M	3.77	3.86
DenseNet-112-33	6.3 M	3.84	3.61
DenseNet-90-60	16.1 M	3.81	3.5
DenseNet-80-80	22.4 M	3.48	3.49
DenseNet-80-120	50.4 M	3.37	3.54

Table 3. **Test error on CIFAR-100** for Wide-ResNet students trained from identical Wide-ResNet teachers and for DenseNet-90-60 students trained from Wide-ResNet teachers

Network	Teacher	BAN	Dense-90-60
Wide-ResNet-28-1	30.05	29.43	24.93
Wide-ResNet-28-2	25.32	24.38	18.49
Wide-ResNet-28-5	20.88	20.93	17.52
Wide-ResNet-28-10	19.08	18.25	16.79

Network Recasting: A Universal Method for Network Architecture Transformation

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

<Student Network>

MSE Loss

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

<Student Network>

MSE Loss

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

MSE Loss

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network>

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network> $\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$ MSE Loss <Student Network>

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network> $\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$ **MSE** Loss <Student Network>

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Teacher Network> $\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|_2^2$ **MSE** Loss <Student Network>

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

 $\frac{2}{2}$ **MSE** Loss 1

<Teacher Network>

$$\mathcal{L}_{mse}(W_T, W_S) = \frac{1}{N} \|A(x; W_T) - A(x; W_S)\|$$

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Method for dimension mismatch>

<Recasting Methods>

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

<Network recasting structure>

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

Figure 6: Visualization of filters in the first layer of AlexNet (*left*) and a student network (*right*). Redundant filters are removed after network recasting.

- Joonsang Yu, Sungbum Kang and Kiyoung Choi.

Method	Туре	C10+	C100+	Params	Mults	Acts/image	Time/image
VGG-16							
Baseline		6.85	28.80	$14.71M(1.0\times)$	$313.20M(1.0\times)$	$0.31 M (1.0 \times)$	0.37ms
Recasting	Conv	8.31	31.56	2.36M (6.2×)	50.63M (6.2×)	$0.13M(2.4\times)$	0.31ms
KD	Conv	9.24	33.14	$2.36M(6.2\times)$	$50.63M(6.2\times)$	$0.13M(2.4\times)$	0.31ms
Backprop	Conv	8.71	35.13	$2.36M(6.2\times)$	$50.63M(6.2\times)$	$0.13M(2.4\times)$	0.31ms
WRN-28-10							
Baseline		4.06	19.54	$36.45M(1.0\times)$	$5.24B(1.0\times)$	$2.52M(1.0\times)$	0.81ms
Recasting	Basic	5.18	24.13	1.46M (24.9×)	0.21B (24.5×)	$0.52M(4.9 \times)$	0.56ms
KD	Basic	5.48	25.28	$1.46M(24.9\times)$	$0.21B(24.5 \times)$	$0.52M(4.9 \times)$	0.56ms
Backprop	Basic	5.39	25.78	$1.46M(24.9\times)$	$0.21B(24.5 \times)$	$0.52M(4.9\times)$	0.56ms

Table 3: Error rates (%) of compression results on CIFAR datasets. (B/M: billion/million)

Table 5: Comparison of error rate (%) with previous works on ILSVRC2012. (B/M: billion/million)

Method	Top1	Top5	Params	Mults	Acts/batch	Actual speed-up		
ResNet-50								
Recasting(C+R _{bt})	25.00	7.71	21.72M	2.40B	236.16M	2.1 ×		
ThiNet-30 (Luo, Wu, and Lin 2017)	31.58	11.7	8.66M	1.10 B	-	1.3 imes		
AutoPruner ($r = 0.3$) (Luo and Wu 2018)	27.47	8.89	-	1.32B	-	-		
VGG-16								
Recasting(C_A)	30.05	10.38	120.61M	3.12B	220.61M	3.2×		
ThiNet-Conv (Luo, Wu, and Lin 2017)	30.20	10.47	131.44M	4.79B	-	2.5 imes		
RNP $(3\times)$ (Lin et al. 2017)	-	12.42	-	-	-	2.3 imes		
Channel Pruning $(3\times)$ (He, Zhang, and Sun 2017)	-	11.10	-	-	-	2.5 imes		
AutoPruner ($r = 0.4$) (Luo and Wu 2018)	31.57	11.57	-	4.09B	-	-		

Relational Knowledge Distillation

Relational Knowledge Distillation. In CVPR, 2019.

- Wonpyo Park, Dongju Kim, Yan Lu and Minsu Cho.

<Difference between KD and RKD>

Relational Knowledge Distillation. In CVPR, 2019.

- Wonpyo Park, Dongju Kim, Yan Lu and Minsu Cho.

Relational Knowledge Distillation

$$\psi_{A}(t_{i}, t_{j}, t_{k}) = \cos \angle t_{i}t_{j}t_{k} = \langle \mathbf{e}^{ij}, \mathbf{e}^{kj} \rangle$$
where $\mathbf{e}^{ij} = \frac{t_{i} - t_{j}}{\|t_{i} - t_{j}\|_{2}}, \mathbf{e}^{kj} = \frac{t_{k} - t_{j}}{\|t_{k} - t_{j}\|_{2}}$

$$l_{\delta}(x, y) = \begin{cases} \frac{1}{2}(x - y)^{2} & \text{for } |x - y| \leq 1\\ |x - y| - \frac{1}{2}, & \text{otherwise.} \end{cases}$$

$$\mathcal{L}_{RKD-A} = \sum_{(x_{i}, x_{j}, x_{k}) \in \mathcal{X}^{3}} l_{\delta}(\psi_{A}(t_{i}, t_{j}, t_{k}), \psi_{A}(s_{i}, s_{j}, s_{k}))$$

$$\leq \text{Angle-wise distillation loss}$$

$$\begin{split} \psi_{\mathrm{D}}(t_{i},t_{j}) &= \frac{1}{\mu} \|t_{i} - t_{j}\|_{2} \\ \mu &= \frac{1}{|\mathcal{X}^{2}|} \sum_{(x_{i},x_{j})\in\mathcal{X}^{2}} \|t_{i} - t_{j}\|_{2} \\ \mathcal{L}_{\mathrm{RKD-D}} &= \sum_{(x_{i},x_{j})\in\mathcal{X}^{2}} l_{\delta} \big(\psi_{\mathrm{D}}(t_{i},t_{j}),\psi_{\mathrm{D}}(s_{i},s_{j})\big) \\ &< \mathsf{Distance-wise distillation loss} > \end{split}$$

Relational Knowledge Distillation. In CVPR, 2019.

- Wonpyo Park, Dongju Kim, Yan Lu and Minsu Cho.

	CIFAR-100 [15]	Tiny ImageNet [46]
Baseline	71.26	54.45
RKD-D	72.27	54.97
RKD-DA	72.97	56.36
$\frac{1}{1} = \frac{1}{1}$	74.26	57.65
HKD+RKD-DA	74.66	58.15
FitNet [27]	70.81	55.59
FitNet+RKD-DA	72.98	55.54
Attention [47]	72.68	55.51
Attention+RKD-DA	73.53	56.55
Teacher	77.76	61.55

Table 4: Accuracy (%) on CIFAR-100 and Tiny ImageNet.

SUMMARY

Regularizer

• Teaching & Learning

•Various Fields (Model Compression, Transfer Learning, Few shot Learning, Meta Learning...)

