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* Labeled data
* Direct feedback
» Predict outcome/future

Supervised

Unsupervised Reinforcement
* No labels » Decision process
* No feedback * Reward system
* “Find hidden structure” * Learn series of actions

6/28/2018



i
| — [ =) [ — —
« OCIU=SK| L AS O SS..
- -_— Ny
. AIRISE mpX|H AlZ, £, £, 0)2 ow :
a0 L, ey
..O . o
O OO OQutput Layer
Input Layer
Hidden Layer

EAES 2RO BE 2

i

Encode Decode

- Hlxzeh AUS BS0o{La &S f

- AIRI2E [MX|H 84, =E.

6/28/2018



Elald

0 7I-§|.sl-*

6/28/2018

01 E A WSolOF El=X] &1 &S Ij

0| $SO= oI5 ChS AEAT} 01
2X| 20 A o)

SIS YRE SWSIES 5t1 AS

i




Q0 XIS Bt 0 HIXIE 8t

L o e Encode
Ny
784 o 10
flatten) O Og argmax() 4

.O O
O OO Qutput Layer |npUt
Input Layer
Hidden Layer

=] =LA

Q Zalels |
internal state “Nreward

. g 4SS <

[ =) 5 .
- HELNEELS environment
. 124 Ztofl CHEH HATHZROIR —

learning rate o
inverse temperature i
discount rate y

observation
6/28/2018



Rl
Hi
1%
o>
10
It
.l
>

= Hzxl H=

O
o
o
b
i1
=[ |

| BN

: RPN(Region Proposal Network)...
+ =&l : RCNN, Fast-RCNN, Faster-RCNN

[— I —
=TT
. B
[—
=y p

Convolution
Pooling

GooglLeNet Architecture

Concat/Normalize

: LeNet, AlexNet(Inception), VGG, GooglLeNet, ResNet...

¢ ¢
lepf);al ~| Bounding box
classifier |softmax | | Linea regressors
R &
! FCs
L TR
y 4 - & Rol pooling
External proposal —-& i 9% !:7
algorithm / -

e.g. selective search A t P W

ConvNet
4 (applied to entire

Multi-task loss

~ Trainable

6/28/2018



HIXIE Bieye] B

= | [— =]

Q OiojE{2] xj s 3 AEIY 7

 starGAN, waveGAN, cycleGAN, waveGAN ....
* AutoEncoder, Denoising Network, Unet...

Source Domain Target Domam
Monet 7_ Photos _ Zebras % Horses > i

Large gap in
appearance

=

R

Smaller gap in
spatial layout

photo —>Monet : horse —} zebra

Image Style Transfer

waveGAN

Medical Analysis

6/28/2018



Aseto] o

|
o] =] — = Y ' o
ast oiato £1xis [ Jpeeadtelte s b
« Q-Network(Double, Dueling, DD) o 0 . —H4
*  Prioritized Experience Replay " ALPHAGO _ | \GUES 99 0 | |\
. . +++00:00:48 ' - 4 & @ LEE sEpoL
* Policy Gradient, .... Wi WY : 00:01:00

\
5 \'_t'
A
+ \\
<

““Move to Beacon " “Collect Minerals and
Gas g
S, A

~“Collect Mineral5
Shards

6/28/2018 10



6/28/2018

oM ZEtels

o

olOFsl=71

Idea Suggestions

KeumGang Cha

11



°Q

CE7| 28 it MZE O[O|X| E7]  MO|ZMA|~

ojalzd g2 OfEl2|¥ = deep learning

-

Sreward

> t
en
-l

|
Raw Feature —> Deep Noural et —>  0-Value Mg E1L°2| e

sovolution Fully connected

Agent

State: s
Reward: r

Actions: a

st
— (epervee
iesmingl

= w4 ——
ohen e 2ol e
machien Wamna) ooy UM 8448
womeal

N pechuecures . - - , o g
. s § ) | irrtoranert
s C2FSISkS ~ Ty el o] S8t atiol ¥ esmed) - e o

= =
= =] Lo = XES s

i . T - S—

ot I,:W Qvalues Reinforcement Learning Framework Deep Learning «ti Keras .
Agent Action a;

cgreedy for CRRATIONS
training & _

sy e 2
Mas())for play 0 @
—— o T

lenvironment] {Controlier) l ’

« more directly some -

v =t ¥ Environment
-1 ) e

! n Reward r,
Bﬂ State s,.4

W have ways of making you spesh.”

MAA2 Jpo ERiED LHNE ) s <
L - i Reinforcement Learning Setup

6/28/2018

12



- &E0f mE EE
- B S S
/

6/28/2018



6/28/2018

Ls2E0Iek

Idea Suggestions

KeumGang Cha

14



S EE2?

EX : OHo|M It H2tAR Bl & ZotetE (M AHOIS Y)

6/28/2018

7 //

internal state “Nreward

X

1 environment

action § |
———

A L
learning rate o

inverse temperature
discount rate

observation



gadE dosli=2 A}

J Markov Decision Process

Markov Decision Process is Markov reward process with decisions. It is environment in
which all states are Markov.

A Markov Decision Process isasetof < S,P, A, R,y >
P is a probability set of

S is a finite set of states

A is a finite set of actions

R is reward function, R = E[R;1|S; = s, A; = a

y is a discount factor y € [0,1]

J Bellman Equation
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y is a discount factor y € [0,1]
Q(sear) = R$ +yQ(Se41, Are1)
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Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih  Koray Kavukcuoglu  David Silver  Alex Graves loannis Antonoglou
Daan Wierstra  Martin Riedmiller

DeepMind Technologies

{vlad,koray,david,alex.qraveq,-oav'xl ,daan,martin.riedm -ler} @ deepmind.com

Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

640 x 404 - atariage com

At last — a computer program that
can beat a champion Go player ¢

ALL sysrfmsba

SONGBIRDS AFEGUARD WHEN GENES
ARTE TRANSPARENCY ~ GOT ‘SELFISH’
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Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',

Martin Riedmiller', Andreas K. Fidjeland',

rg Ostrovski', Stig Petersen', €

les Beattie', Amir Sadik', loannis Antonoglou',

Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

The theory of rei k‘zming, account’,
deeply rooted in p gical’ and

animal behaviour, of how agents may optimize their mmmx of an
Te

approachi 1d ity, however, t
wuh adifficult task: they must derive dﬁmm representations of the
from high-dimensional sensory inputs, and use these
past ience to new humans
and other lmmals seem tosolve this problem through a harmonious
I sensory pro-
cessing systcms"\ the former evidenced by a wealth of neural data
revealing notable parallels between the phasic signals emitted by dopa-
minergic neurons and temporal difference reinforcement learning
. rning 1 i d some
successes in a variety of domains™*, their applicability has previously
been limited tod ins in which useful feat be handcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neural networks” ' to
develop a novel artificial agent, termed a deep Q-network, that can
I policiesdi from high-di s
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games'. We demon-
strate that the deep Q-network agent, receiving only the pixels and
the game score as inputs, was able to surpass the performance of all
previous algorithms and achieve a level comparable to that of a pro-
fessional human games tester across a set of 49 games, using the same
Igorithm, network archi and hyper This work
bridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent that is capable of learn-
ing to excel at a diverse array of challenging tasks.
We set out to create a single algorithm that would be able to develop
a wide range of competencies on a varied range of challenging tasks—a

agent is to select actions in a fashion that maximizes cumulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

Q' (s,a) = maxE[r,+yr1 + 7142+ s, =5, a,=a, x|,

which is the maximum sum of rewards r, discounted by y at each time
step t, achievable by a behaviour polic P(als), after making an
observation (s) and taking an action (a) (see Methods)".
Reinforcement learning is known to be unstable or even to diverge
when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function®, This
instability has several causes: the correlations present in the sequence
of observations, the fact that small updates to Q may significantly change
the policy and therefore change the data distribution, and the correlations
between the action-values (Q) and the target values r + y max Q(s, a')

Weaddress these instabilities with a novel variant of Q-learning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay*’** that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for details). Second, we used
an iterative update that adjusts the action-values (Q) towards target
values thatare only periodically updated, thereby reducing correlations
with the target.

While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q-iteration™, these
methods involve the repeated training of networks de novo on hundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function Q(s,a;0,) using the deep
convolutional neural network shown in Fig. 1, in which 0, are the param
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences ¢, = (sn@n0S: + 1)
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d GAE(Generalized Advantaged Estimation)

High-Dimensional Continuous Control Using Generalized Advantage Estimation

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter Abbeel
(Submitted on 8 Jun 2015 (v1), last revised 9 Sep 2016 (this version, v3))

Policy gradient methods are an appealing approach in reinforcement learning because they directly optimize the cumulative reward and can straightforwardly be used with
nonlinear function approximators such as neural networks. The two main challenges are the large number of samples typically required, and the difficulty of obtaining stable and
steady improvement despite the nonstationarity of the incoming data. We address the first challenge by using value functions to substantially reduce the variance of policy
gradient estimates at the cost of some bias, with an exponentially-weighted estimator of the advantage function that is analogous to TD(lambda). We address the second
challenge by using trust region optimization procedure for both the policy and the value function, which are represented by neural networks.

Our approach yields strong empirical results on highly challenging 3D locomotion tasks, learning running gaits for bipedal and quadrupedal simulated robots, and learning a
policy for getting the biped to stand up from starting out lying on the ground. In contrast to a body of prior work that uses hand-crafted policy representations, our neural network
policies map directly from raw kinematics to joint torques. Our algorithm is fully model-free, and the amount of simulated experience required for the learning tasks on 3D bipeds
corresponds to 1-2 weeks of real time.

O HER(Hindsight Experience Replay)
Hindsight Experience Replay

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, Wojciech Zaremba
(Submitted on 5 Jul 2017 (v1), last revised 23 Feb 2018 (this version, v3))

Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows
sample-efficient learning from rewards which are sparse and binary and therefore avoid the need for complicated reward engineering. It can be combined with an arbitrary off-
policy RL algorithm and may be seen as a form of implicit curriculum.

We demonstrate our approach on the task of manipulating objects with a robotic arm. In particular, we run experiments on three different tasks: pushing, sliding, and pick-and-
place, in each case using only binary rewards indicating whether or not the task is completed. Our ablation studies show that Hindsight Experience Replay is a crucial ingredient
which makes training possible in these challenging environments. We show that our policies trained on a physics simulation can be deployed on a physical robot and
successfully complete the task.
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Figure 1www.Bandicam.com

Avg. Reward: 0 Reward: 16 Total Game: 1

THANK YOU

Any questions or comments?

E-mail : chagmgang@gmail.com, chagmgang@plani.co.kr
Github : http://github.com/chagmgang
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