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Introduction to GNNs




Convolutional Neural Network
— Best solution for Vision Recognition
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* Based on sampling theorem

* Works on regular grid




Recurrent Neural Network
— Best solution for Natural Language Processing
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* Suitable for finding relationship between elements in a sequence

* Based on Markov process




HOWEVER,
- There are other types of data as well as image, sequence, ...
- Which have “irregular” data distribution
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(Facebook, Wikipedia)

All you need is GRAPH!




Graph Representation

Graph = G(X,A)

X : Node, Vertex

- Individual person in a social network

- Atoms in a molecule =
H /C\
C H
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Graph Representation

Graph = G(X,A)
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A : Adjacency matrix

- Edges of a graph

- Connectivity, Relationship

Represent relationship, interaction between elements of the system




Graph Neural Networks
- Utilizing graphs for input of the neural networks
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https://tkipf.github.io/graph-convolutional-networks/



https://tkipf.github.io/graph-convolutional-networks/

Graph Neural Networks

- What can we do with GNNs?

* Node classification
* Link prediction
* Node2Vec, Subgraph2Vec, Graph2Vec

* Learning physics law from data

https://tkipf.github.io/graph-convolutional-networks/



https://tkipf.github.io/graph-convolutional-networks/

Graph Neural Networks

- Node state : Feature extracted from the Graph Neural Network
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CNNs learn features from convolution operations and classify the objects

https://tkipf.github.io/graph-convolutional-networks/



https://tkipf.github.io/graph-convolutional-networks/

Graph Neural Networks

- Node states : Feature extracted from the Graph Neural Network
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Update ‘hidden node states’, in other words, learn node features

https://tkipf.github.io/graph-convolutional-networks/



https://tkipf.github.io/graph-convolutional-networks/

Graph Neural Networks

- Node states : Feature extracted from the Graph Neural Network

graph convolution
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Then, we can do classification, regression,

and other works based on updated hidden node states

https://www.experoinc.com/post/node-classification-by-graph-convolutional-network



https://www.experoinc.com/post/node-classification-by-graph-convolutional-network

Graph Convolution Network
and beyond




Convolution Neural Network

- Learning weight parameter for sampling points on a regular grid
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What NN learns




Convolution Neural Network

- Learning weight parameter for sampling points on a regular grid
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What NN learns
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Graph Convolution Network

- For Irregular representations? Like Graph structure!
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Graph Convolution Network

- For Irregular representations? Like Graph structure!
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(a) Graph Convolutional Network

X3P = a(xPwO + xPwO + xPwO + xPwdy




Graph Convolution Network

- For Irregular representations? Like Graph structure!
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(a) Graph Convolutional Network

X" = g(axOw D)
A : adjacency matrix — connectivity matrix between nodes




Graph Attention Network — beyond GCN

- Attention mechanism again

* |t simply sum node states with same

weights

‘ { hidden
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input layer output layer * All we need is an attention, again!

* However, the neighborhoods must be

considered with different importances.

(a) Graph Convolutional Network
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Graph Attention Network — beyond GCN

- Attention mechanism again

* |t simply sum node states with same

weights

concat/avg

* However, the neighborhoods must be

considered with different importances.

* All we need is an attention, again!
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Applications on Molecular Science




Molecules

- A set of atoms consists the molecule
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GCN and attention mechanism
- We treat “physical interaction between atoms”, which is central principle of molecular

science, using GCN and attention mechanism
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Our Neural Network for the molecular system
Mol. Gra|1h; G(A,X)
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Our Neural Network for the molecular system

o Learning solubility of molecules
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Our Neural Network for the molecular system

Learning photovoltaic efficiency (QM phenomena)
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Our Neural Network for the molecular system

Learning solubility of molecules

\ _—
0 2500 5000
N / 015
3.2
Graph Conv.
T
lGraph Conv. 2500 1.6

l Graph Conv.

Ascending 5000

| sampiing 2 order L2-norm
Graph Features wu mu suss
| predictor Similar molecules are located closely
Property in the graph latent space




Our Neural Network for the molecular system

- Molecules can be represented by graph structures.

- We can precisely predict molecular properties using graph convolution with attention
mechanism.

- The neural network can classify atoms (nodes) according to the chemistry knowledge.

- Also similar molecules are located closely in graph latent space.

- Not only prediction, but also interpretable results for molecular science

- We have devised generative models for de novo molecular design.




