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INVERSE PROBLEMS

noise
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model d=G(x) +n
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INVERSE PROBLEMS

e.g. natural images )
noise

|

Blurring,
Down Sampling

observed image

model d=G(x) +n

A 4

Inverse
problem

denoising & super-resolution*

Restored image * Bae W and Yoo J, CVPRW, 2017
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INVERSE PROBLEMS

e.g. electromagnetic, or acoustic wave )
noise

|

| Maxwell equation ., |
Lame equation

original density del d= G 1 observed field
mode =G(x) +n

A 4
Inverse <
problem physical property reconstruction* or
source localization

Yoo J et al, SIAM 20716
Restored den5|ty * Yoo J et al, SIAM 2018 (minor revision)

KAIST BiSPL



INVERSE PROBLEMS

General statement of the problem
« To find the best model such that d = G(x)

« In linear system, e.g. X-ray CT, we minimize the following cost function:

d = Gx, ¢ = |ld—Gx |5

 In signal processing society: 1 < A B
1 0
1,0,1,0]114
_ O) 1) O; 1 B _ 0 <«
Gx = 11.0.0||cl rank(G) = 4 0 Bo
10,0,1111D.
/W +D)dx | | Doy
well — W 3671 1 0

[=2

more constraints, assumptions, regularization, iterative methods, eftc.
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INVERSE PROBLEMS

General statement of the problem
« To find the best model such that d = G(x)

« In linear system, e.g. X-ray CT, we minimize the following cost function:

d=Gx, ¢=|d-Gx]|3

* In machine learning society:

> CNN

Conv, ReLU, pooling, etc.

~ ~

GT, where GTG =1 X
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Deep learning works extremely well... but why?

« Sometimes blind application of these techniques provides even better performance than
mathematically driven classical signal processing approaches.
« The more we observe impressive empirical results in image reconstruction problems, the more

unanswered questions we encounter:

"Why convolution? Why do we need a pooling and unpooling in some architectures? etc

« What is the link between the classical signal processing theory and deep learning?

Can deep learning go beyond?
« Would it be possible to train the network learn the complicated non-linear physics?

e How?
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. INTRODUCTION
A. Inverse scattering problem (DOT)

B. What to solve? & How to solve?
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INVERSE SCATTERING PROBLEMS

Photon/Wave scattering in a turbid media (Very non-linear, ill-posed)
 Trajectories/Interactions (absorption, scattering, reflection, etc.)

« Electromagnetic, Elastic, Optical, Acoustic waves : d = G(x) « more generalized model

diffusive

Reflection
\v// /

Incident Tranmitted
Light | === Light

Absorption
ballistic

I
"I‘----Q-___

Diffuse
transmission

Snake-like

Unscattered
transmission

photon trajectories Light interaction with matter
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INVERSE SCATTERING PROBLEMS

Inverse Scattering Problems in Medical Imaging
« Applications
Near Infra-Red (NIR), Ultrasound, Photo-acoustic, EEG, etc.

Non-invasive, non-destructive examination

Fast, cheap, and portable machine

Ultrasonic

emission

Light sources;Source fiber
FD detectors * \
( FD detector fiber |

. - -,
'/ ~

. ' \ﬁj

\
\

1
\ 1 .
Breast . P -
Box . N, L t ‘ R
128 cm Gy =i =9 EP Ultrasonic
* Source - ‘ detection
° FD detectors - o '
J— rHb rHbO, rSto, o
—— eom i = ,
Laser/ —#’ﬁ‘—b Thermal_’ Acoustic _>Ultrasonic_> Image
UL — —_— | — — S— — RF pulse SOIPLON. xpansion waves detection | |formation
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INVERSE SCATTERING PROBLEMS

Near-infrared (NIR, ~650-950 nm)

Near-infrared light can travel deep in tissue, as a result of the relatively small absorption of
water and hemoglobin. * Durduran et al., MICCAI, 2010

1/cm
T T T L 079
—l "Physiological Window" 52
40 SEREB 0.785
~-Water [x100 '|_ 0.3} == ™ 5.1
vl-’\ 30 Lipid |:(1|"f;?“< g 02 4 e A 5
£ — S5 ; 0.775 =
= );'\; 700 800 900 L 077 N
Ak A (nm) 80.765 .
10 /\/\/ |} 4.7
3 ‘ 0.76
i i K‘._r/\-,\‘ N SR e R, RN i 4.6
300 400 500 600 700 800 900 1000 S
A (nm) X-ray DBT Total hemoglobin Oxygen saturation Scattering coefficient

The goal of DQOT is to reconstruct the spatial distribution of optical/physiological properties at each
point (or volume element) in the tissue from measurements of fluence rate on the tissue surface.
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INVERSE SCATTERING PROBLEMS

Lipmann-Schwinger Equation

« Mapping between the 3D distribution of optical properties f and the measurements g

/\ A 1) BUMERE BE A4 22 £ of 08 57 HO|E g8 PALCH

3D distribution f - Measurement g
v _ T > dston - st (f comes from a smoothly varying perturbation §u)
J f — g {f cames from a smoathly varying perturbation S}
Scattering
- —— ) 2) O] f, & Afo[o| A= XE WMoz BHE £+ Q&LICt
. 1 ;
M'rn [j] (X) = o D— G(X! y)u'm, (.V)f(Y)dy
0 Jul_,9Q, %
> f Gc+oy———— Do
Measurement g — 3D distribution f 22? G 1777 h
(B ol Yo
non-linear, ill-posed body

KAIST BiSPL.



INVERSE SCATTERING PROBLEMS

pe N
DEEP LEARNING !11....??
\ J
OKAY.....
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ISSUES TO OVERCOME

1. Lack of good conventional algorithms
« Applying conventional inversion algorithms and denoising the artifacts using the CNNs

are unsatisfactory since they rely on heavy assumptions and linearization.

e.g. Born approximation

1

Malflo0 = = [ Gley)ub ) ()dy

U (1) > upy (%)

S
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ISSUES TO OVERCOME

1. Lack of good conventional algorithms
« Applying conventional inversion algorithms and denoising the artifacts using the CNNs

are unsatisfactory since they rely on heavy assumptions and linearization.

FBP

L~

Photoacoustic tomography (PAT)5!

CNN

5

[1] ODT, Kamilov et al., Optica, 2015
[2] Electron scattering, Broek and Koch, Physical review letter
[3] PAT, Antholzer et al. arXiv, 2017
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ISSUES TO OVERCOME

1. Lack of good conventional algorithms
« Applying conventional inversion algorithms and denoising the artifacts using the CNNs
are unsatisfactory since they rely on heavy assumptions and linearization.
2. Domain & dimension mismatch (How to design the network???)
« The measurements g and optical distribution image f live in different domain with
different dimension (1D — 3D, severely ill-posed).
3. Commercial device was not available.
- Still [aboratory or research level usage.
* Proto-type device available (not calibrated or validated).
4. Lack of real data

« At the early stage, only a single data measured by proto-type device were available

KAIST BiSPL:



ISSUES TO OVERCOME

ﬁ. Lack of good conventional algorithms \

DCNN is certainly the trend of this era ...

2. Domain & dimension mismatch (How to design the network???)

N

3. Commercial device was not available.

We need a new design of network architecture

4. Lack of real data
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Neural network for inverting Lipmann-Schwinger Equation

« f=Tg T=M"

j -

detector
|
|
~ B
il EEY

f= (C) % 7(0)

« The inverting operator is naturally found during the training phase.

Achieve a denoised signal with a good signal representation which is trained via data without any assumption.

KAIST
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Table 2. Network architecture specifications. Here, N M is the number of filtered measurement pairs (Polypropylene: NAM =
538, Biomimic: NM = 466, Mouse (hormal): NM = 470, Mouse (with tumor): NM = 1533).

Type Polypropylene Biomimic Animal
patch size output depth patch size output depth patch size output depth
/stride size /stride size /stride size
Gaussian noise - Ix1xNM - - I x1xNM - - I x1xNM -
fully connected - 1 x 1 x 40, 960 1 - 1 x 1 x 53,760 1 - I x1x12,288 x 2 2
dropout - - - - - - - - -
reshape - 32 x64x20x1 - - 48 x 70 x 16 x 1 - - 32x 32 x12x2 -
3D convolution | 3 x 3 x3/1 | 32 x 64 x 20 x 16 16 3x3x3/1 | 48 %70 x 16 x 64 64 3x3x3/1 | 32x32x12x128 128
3D convolution | 3 x 3 x3/1 | 32 x 64 x 20 x 1 1 3x3x3/1 | 48 x 70 x 16 x 64 64 3x3x3/1 | 32x32x12x128 128
3D convolution - - - 3x3x3/1 | 48 x 70 x 16 x 1 1 3x3x3/1 32x32x12x1 1

« The overall structure of the networks is remained same across different set of experiment data

« The number of convolution layers and their filters vary dependent on the data but this is chosen to show the

best performance not due to the failure of the network

« Note that the rest of parameters such as Gaussian noise variance and dropout rate are remained same for

every case

KAIST
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ISSUES TO OVERCOME

BUSTED

BUSTED

/3. Commercial device was not available. \
Make your hands dirty. Start from the system.

4. Lack of real data

-

KAIST BiSPL.

If you-don’t ‘have the ‘data. Make it up.




System calibration and data acquisition
« Based on the data from hardware system (KERI), performed the
signal analysis to calibrate the hardware system.

« Phantom with known optical values are used.

S2S3S4S5 e Sn

s1,D1
/51,1)2
S1,D3

S1,Dm
S2,D1

\sn,bm/

Schematic illustration of DOT system DOT system (KERI)

D1D2D3D4D5 - - -« Dm
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System calibration and data acquisition

LD/TEC + LD mount
(NIR Generator)

Signal
Processing
Modules
+ Controller

Storage
(RAID)

Motor Driver
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Data preprocessing

« Discard the measurement pairs over the src-det distance limit (51 mm)

« Find the optical coefficients based on the homogeneous model

L
Dm
st DISTANCE< 51 mm

AMPLITUDE

400

y =-0.07088 *x + 4.9592

300

PHASE

100 -

0 50 100 150

Source / Detector Distance

200

200

y = 0.42373 *x + 39.3355

50 100 150 200
Source / Detector Distance

Data preprocessing based on src-det distance

KAIST

Source

<51 mm

Detector
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Simulation data generation

Using the finite element method (FEM) based solver N/RFAST

Mesh data are re-gridded to matrix form

Up to three anomalies with different size (radius: 2 mm ~ 13 mm) and optical
properties at various position (x,y, z)

Anomaly has two to five times bigger optical properties than the homogeneous
background (similar to tumor compared to the normal tissue).

1500 data (1000 for training / 500 for validation)

NIRFASTSlicer™

HHHHHHHHHHHHHH i)]% UvaERSlTYOF . .
B BenENe @ pveeme B ososiicer W Kitware
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Data preprocessing

« Discard the measurement pairs over the src-det distance limit (51 mm)
« Find the optical coefficients based on the homogeneous model
« Domain adaptation from real to simulation data

(matching the signal envelope, amplitudes, etc.)

14

Matching the signal envelop

C= u;imul(x)-/uéxp (x)

KAIST
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EXPERIMENT DESIGN, DEVICE CALIBRATION, DATA PREPROCESSING, UNDERSTANING PHYSICS, DL MODEL
DATA GENERATION, EXPERIMENT, EXPERIMENT, EXPERIMENT ... TRIALS AND ERRORS DESIGN

This took 80% of the research

KAIST BiSPL.



ISSUES TO OVERCOME

BUSTED

BUSTED

BUSTED

BUSTED
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Il. EXPERIMENTS
A. Results

B. Take home messages
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SIMULATION

TRAINING
Additive Gaussian noise (o = 0.2)
Dropout (p = 0.7) for FC layer
Background u, values are
subtracted
Data is centered and normalized
to range between (-1,1)
MSE loss
ADAM optimizer (default setup)
Batch size: 64

Early stoppling (no improvement in

validation loss for 10 epochs)
Training time: ~380 SEC




PHANTOM

Polyprophylene phantom
(200 mm x 140 mm x 40 mm)

200 mm

Biomimic phantom
(175mm x 120 mm X 40 mm)

175 mm

Ground truth

Iterative method

Proposed

Ground truth

Iterative method

Proposed




PHANTOM

Polyprophylene phantom
(200 mm x 140 mm x 40 mm)

40 mm
140 mm
200 mm
Biomimic phantom
(175 mm x 120 mm X 40 mm)
40 mm
@ © e

120 mm

175 mm

Proposed

Proposed




PHANTOM

Polyprophylene phantom
(200 mm x 140 mm x 40 mm)

40 mm
140 mm
200 mm
Biomimic phantom
(175 mm x 120 mm X 40 mm)
40 mm
® o o

/”120 mm

175 mm

@/,
jrlﬁf\}\ﬁ
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Proposed

Proposed




Mouse (normal) Iterative method middle bottom

IN VIVO

S . P

Mouse
(80 mm x 80 mm X 30 mm)

30 mm
Mouse (normal) Proposed middle bottom

i i J gt
T T T T

4=

-

Proposed middle bottom




IN VIVO

Mouse
(80 mm x 80 mm X 30 mm)

30 mm

Mouse (normal)

Mouse (normal)

Iterative method middle

-

bottom

middle

Proposed middle

bottom




TAKE HOME MESSAGE

1) Domain knowledge matters

2) Data preprocessing is important

* DL NEEDS BABYSITTING A LOT!
GARBAGE IN — GARBAGE OUT
£ Mzof cf$t o|sH(DOMAIN KNOWLEDGE)E
HIEt o 2 &5t PREPROCESSING E 2 5|C}.

EXPERIMENT DESIGN, DEVICE CALIBRATION, DATA PREPROCESSING, UNDERSTANING PHYSICS, DL MODEL
DATA GENERATION, EXPERIMENT, EXPERIMENT, EXPERIMENT ... TRIALS AND ERRORS DESIGN

This took 80% of the research

KAIST BiSPL.



TAKE HOME MESSAGE

3) Do not afraid to make your hands dirty

4) Quick trial and errors

* MAKE YOUR WORKING ENVIRONMENT
IDEAZH S Uf Hp2 MES o2 + Y= BYS

UE= A0| 2oL

ri

20%7t 20%Y = QUAUHE 0|7

DL MODEL
DESIGN
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OKAY THAT WORKS...BUT WHY?
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IV. THEORY

A. Deep Convolutional Framelets

KAIST BiSPL.



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 1

“Lifted Hankel matrix of noiseless signal f is often low-ranked whereas that of noise € is usually full-ranked” [1-3!

(a) Smooth patch

4 y t(Ul.

fi -

(b) Texture patch

3 3

(c) Edge patch

4y +

Ye JC et al., 2017

For an image patch f, smooth or structured signals
has a sparse coefficients in Fourier domain.

Let f € R" be a vectorized patch with n number of

pixels. Here,

Hy( f) is a Hankel matrix of signal f with size d.

@
113
©

= Ha(f)

feleel

jle€e]

@00

BiSPL..



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 1

“Lifted Hankel matrix of noiseless signal f is often low-ranked whereas that of noise € is usually full-ranked” [1-3!

(a) Smooth patch
4y 4%,

For an image patch f,

ho- s 0 fER"=f+e
|
(b) Texture patch ~
= Hy(f) = Hg(f) + Ha(e) =
W | Matrix factorization
(0 Edge p,a“h : low-ranked

: full-ranked
(or sparse)

Ye JC et al., 2017

¢ ©@e0

-
© © ® @@

® O@EOE

]Rnxd
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DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 1

“Lifted Hankel matrix of noiseless signal f is often low-ranked whereas that of noise € is usually full-ranked” [1-3!

For an image patch with missing pixels f € R",

H;(f) € R™*4 is a rank-deficient Hankel matrix,

Matrix completion, or Netflix problem

Low Rank
Matrix

Completion
—_——

E8000808)
X

E0000008

£00B00e0
EEEE[EEEE
X

8] S3 0] S|)
58] S 0| )
] 5] 6 5 [ a9
ettt
peletelo
fotlettu
8] 5 5 G [ 8 9 )
E0800000
Cetttbbd®
(8] 9] 5 e [ S )

Jin et al,, /EEE TIP, 2015
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DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN."

Convolution N j |

(f @) (1 f F(r)p(t — 7)dr

-4 t-3 (-2 f;] G
%K f ‘ K 1 P 3
‘ 1 2 3 4 5 6 ‘ 1 2 3 1 5 [

“convolution”, WiKipedia
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DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN."

Convolution i )
AT B = ANV = 5
Al ©

P € R4 -
f ER" Y1 Ych

KAIST BiSPL.



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN."

(AI;(I)T — In,xn y kIIKIM[T — PR(V)

cf _
Hy(f) = &0 'Hy(f)uw' =oCw’ U1
_ - 1 .
C = @' Hy()¥ =" (foT) (V) =~ c R¥
Single-input multi-output (SIMO) N
f=H}(Hi(f) = (®C)@r(W), C

Multi-input single-output (MISO)

KAIST BiSPL.



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 2

“There is a close relationship between Hankel matrix and convolution operation, which leads us to CNN."

/ Single depth slice
/ X‘ 2

1 4
max pool with 2x2 filters
5 8 and stride 2
3 0
1 4

encoder

NN O =

%
1
3

Y

s 12813 0 7
- I{I[I’ decoder
. f=Hi(Hi(f) = (C)ar(¥),
256 -:12 5 f *

KAIST BiSPL:



DEEP CONVOLUTIONAL FRAMELETS

OBSERVATION 3

“In the signal processing point of view, what CNNs are doing is to find an energy-compacting signal
representations (low-ranked) by training a set of local bases ¥ for a given non-local bases @

encoder
C=o' (foW)
 / =

|

decoder

f=Hi(Hi(f) = (C)ar(¥),
4 =>

Yoshua Bengio's slides, 2013
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SUMMARY SO FAR

Observation 1

Lifted Hankel matrix of noiseless signal f is often low-ranked whereas that of noise € is

usually full-ranked 1-3],
Observation 2
There is a close relationship between Hankel matrix and Convolution.

Observation 3

In signal processing perspective, what CNN actually does is to find a new signal

representation by learning a set of local bases from the data while the global bases are fixed.

[1] Ye JC et al., /EEE TIT, 2017
[2] Yin et al., SIAM, 2017
[3] Ye and han, 2017
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PROPOSED FRAMEWORK

Neural network for inverting Lipmann-Schwinger Equation

« =Ty T=M"

)

* Deep Convolutional Framelets

4 [=HH) = (8C)@7(D),
Mg - C = &Hy(f)v
w s

3D distribution

S

&
\:l detector
~,
l

w T(D) C=(Tg)®T , f=(C)&r(P)

* The inverting operator is naturally found during the training phase.
+ Achieve a denoised signal with a good signal representation which is trained via data without any assumption.
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| PROPOSED A NOVEL DEEP LEARNING FRAMEWORK
FOR INVERSE SCATTERING PROBLEMS

Developed deep learning framework inverting Lippmann-Schwinger equation

Showed that the physical intuition is directly mapped to each layer of network

52535455 50
. //.- o ¢ J Ll W7 le L

Showed that the framework successfully works in various examples R NN e R S

U,

510203045 om
Inhomogeneous model Homogeneous model

ADVANTAGES OVER THE OTHER APPROACHES

- : tional analyti h
1. end-to-end system / simple architecture HemYEEEl cEe ERfpeaEiEs

- no explicit modeling and boundary conditions NN . . T
« data-driven (benefit from the data set) ' { J= : E
« fast and efficient learning and inference § ‘ ==

* no post-processing for parameter tuning
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| PROPOSED A NOVEL DEEP LEARNING FRAMEWORK
FOR INVERSE SCATTERING PROBLEMS

Developed deep learning framework inverting Lippmann-Schwinger equation

Showed that the physical intuition is directly mapped to each layer of network

52535455 sn

L I . R T AT ) 5
Showed that the framework successfully works in various examples AN NI

U,

D1D2D3ID4 DS bm ;
Inhomogeneous model Homogeneous model

ADVANTAGES OVER THE OTHER APPROACHES
L eps T standard CNNs
2. extensibility / practicality

« for different modalities and final image sizes
FBP

Y

CNN

a

« for different experimental conditions

e trainable with numerical data

(learning the signal representation)
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