• [2nd DLCAT] 이제 하이퍼파라미터 튜닝은 케라스 튜너에게 맡기세요 - 김태영


    딥러닝에 입문하여 어느정도 모델을 구성할 수 있다면, 그 다음 고민은 어떻게 이 모델을 튜닝해서 성능을 높일까입니다. 이 과정을 하이퍼파라미터 튜닝이라고 하는데, 모델을 구성하는 여러 요소 중에 최적의 요소 값을 찾아내는 과정을 말합니다. 케라스 모델을 쉽게 튜닝하는 프레임워크를 구글에서 개발했다고 하니 살펴보도록 하겠습니다.


  • [2nd DLCAT] 인공지능, 머신러닝, 딥러닝, 자연어처리, 강화학습 관련 도서


    함께하는 딥러닝 컨퍼런스를 더욱더 즐겁게 만들 도서 사은경품 행사도 진행합니다. 한빛미디어, 길벗, 디지털북스, 위키북스에서 후원해주셨습니다. 경품을 도서별로 설문지를 작성하여 5시 추첨하겠습니다.


  • [2nd DLCAT] 설명가능한 강화학습(Explainable Reinforcement Learning) - 차금강


    현재 DeepMind, OpenAI가 선두가 되어 많은 강화학습 문제들이 해결되고 있습니다. 하지만 내부 모델이 왜 특정 상태에서 해당 행동을 하는지는 인공신경망 특성상 알기 어렵습니다. DeepMind에서는 이러한 문제를 자연어 문제에서 흔히 사용하는 self-attention 모델을 이용하여 설명하는 인공신경망을 발표하였습니다. 이는 추후 설명가능한 진정한 의미의 AI가 될 수 있는 가능성을 내포하고 있습니다. 이에 대해서 구현하고 설명하는 내용을 발표할 것 입니다.


  • [2nd DLCAT] (실습)강화학습 해부학 교실: Rainbow, 이론부터 구현까지 - 김경환,박진우


    Atari 환경에서 아주 좋은 성능을 보여주는 강화학습 알고리즘인 Rainbow를 공부해 봅니다. Rainbow를 구성하는 DQN, PER, Double-Q, Dueling Network, NoisyNet, C51, N-Step TD의 이론적 배경을 함께 살펴보고, Rainbow의 파이토치 구현을 line-by-line으로 뜯어봅시다. (노하우 대방출)


  • [2nd DLCAT] AI 거버넌스 구성/ AI 적용 가속화 방안/ 한계 및 목표치 설정 - 대전AI거버넌스


    대전 산업 AI 생태계 활성화 및 거버넌스 구성 방안


  • [2nd DLCAT] Structuring your first NLP project - 김보섭


    NLP 논문을 구현할 때, 항상 수반하는 전처리(Vocabulary, Tokenizer, Embedding 등)들을 반영하는 project template (project structure)을 구성하고, 구현 시 modulization을 어떻게 효율적으로 해야하는 가에 관하여 소개합니다. 소개한 project template을 토대로 PyTorch로 구현한 “Convolutional Neural Networks for Sentence Classification”을 네이버 영화평점 데이터에 적용해봅니다. (논문의 상세한 내용에 대해서는 소개하지 않습니다. 발표자료를 참고해주세요)


  • [2nd DLCAT] Deeplema, 딥러닝 서비스상용화의 딜레마 - 송규예


    즈니스 관점에서의 딥러닝에 대한 톡입니다. 실제 비즈니스 상에서 기술에 대한 오해나 상용화에 대해 접근방법이 아쉬운적이 많았고 여기에 대한 의견을 나누고자 합니다.


  • [2nd DLCAT] 딥러닝 모델 엑기스 추출(Knowlege Distillation) - 김유민


    여러 딥러닝 모델 압축 방법들 중 Knowledge Distillation분야의 연구 흐름을 관련 논문 리뷰를 통해 소개해드리려고 합니다.


  • [2nd DLCAT] (이론)딥러닝으로 오디오 만나보기 - 남기현


    지금까지 해왔던 연구와는 완전히 달랐던 음원 분야를 연구하게 되어 이를 위해 공부했던 필수 지식들을 이번 시간에 여러분들과 공유하고자 합니다. 이 발표는 audio 분야는 처음인데 아무것도 아는 것이 없어 혼란스러운 분들과 딥러닝을 통한 audio 연구는 어떤 것이 있고 어떻게 하면 되는지 궁금하신 분들을 위한 발표입니다. 최대한 비전문가도 이해할 수 있도록 자료를 구성했으니 audio 분야에 도전하고자 하시는 분에게 도움이 되었으면 합니다.


  • [2nd DLCAT] 실습)MS Azure ML Service와 함께하는 AutoML 사용하기 - 전미정


    대전 산업 AI 생태계 활성화 및 거버넌스 구성 방안